Prediction of Pressure Rise in a Gas Turbine Exhaust Duct Under Flameout Scenarios While Operating On Hydrogen and Natural Gas Blends

Author(s):  
Orlando Ugarte ◽  
Suresh Menon ◽  
Wayne Rattigan ◽  
Paul Winstanley ◽  
Priyank Saxena ◽  
...  

Abstract In recent years, there is a growing interest in blending hydrogen with natural gas fuels to produce low carbon electricity. It is important to evaluate the safety of gas turbine packages under these conditions, such as late-light off and flameout scenarios. However, the assessment of the safety risks by performing experiments in full-scale exhaust ducts is a very expensive and, potentially, risky endeavor. Computational simulations using a high fidelity CFD model provide a cost-effective way of assessing the safety risk. In this study, a computational model is implemented to perform three dimensional, compressible and unsteady simulations of reacting flows in a gas turbine exhaust duct. Computational results were validated against data obtained at the simulated conditions in a representative geometry. Due to the enormous size of the geometry, special attention was given to the discretization of the computational domain and the combustion model. Results show that CFD model predicts main features of the pressure rise driven by the combustion process. The peak pressures obtained computationally and experimentally differed in 20%. This difference increased up to 45% by reducing the preheated inflow conditions. The effects of rig geometry and flow conditions on the accuracy of the CFD model are discussed.

2021 ◽  
Author(s):  
Orlando Ugarte ◽  
Suresh Menon ◽  
Wayne Rattigan ◽  
Paul Winstanley ◽  
Priyank Saxena ◽  
...  

Abstract In recent years, there is a growing interest in blending hydrogen with natural gas fuels to produce low carbon electricity. It is important to evaluate the safety of gas turbine packages under these conditions, such as late-light off and flameout scenarios. However, the assessment of the safety risks by performing experiments in full-scale exhaust ducts is a very expensive and, potentially, risky endeavor. Computational simulations using a high fidelity CFD model provide a cost-effective way of assessing the safety risk. In this study, a computational model is implemented to perform three dimensional, compressible and unsteady simulations of reacting flows in a gas turbine exhaust duct. Computational results were validated against data obtained at the simulated conditions in a representative geometry. Due to the enormous size of the geometry, special attention was given to the discretization of the computational domain and the combustion model. Results show that CFD model predicts main features of the pressure rise driven by the combustion process. The peak pressures obtained computationally and experimentally differed in 20%. This difference increased up to 45% by reducing the preheated inflow conditions. The effects of rig geometry and flow conditions on the accuracy of the CFD model are discussed.


1968 ◽  
Vol 90 (3) ◽  
pp. 265-270 ◽  
Author(s):  
C. G. Ringwall ◽  
L. R. Kelley

Circuit concepts and test data for a fluidic system to sense the average temperature in a gas turbine exhaust duct are presented. Phase discrimination techniques are used to sense the average wave velocity in a long tube and to produce an output pressure differential proportional to temperature error.


Author(s):  
Takeharu Hasegawa

Our study found that burning a CO-rich gasified coal fuel, derived from an oxygen–CO2 blown gasifier, with oxygen under stoichiometric conditions in a closed cycle gas turbine produced a highly-efficient, oxy-fuel integrated coal gasification combined cycle (IGCC) power generation system with CO2 capture. We diluted stoichiometric combustion with recycled gas turbine exhaust and adjusted for given temperatures. Some of the exhaust was used to feed coal into the gasifier. In doing so, we found it necessary to minimize not only CO and H2 of unburned fuel constituents but also residual O2, not consumed in the gas turbine combustion process. In this study, we examined the emission characteristics of gasified-fueled stoichiometric combustion with oxygen through numerical analysis based on reaction kinetics. Furthermore, we investigated the reaction characteristics of reactant gases of CO, H2, and O2 remaining in the recirculating gas turbine exhaust using present numerical procedures. As a result, we were able to clarify that since fuel oxidation reaction is inhibited due to reasons of exhaust recirculation and lower oxygen partial pressure, CO oxidization is very sluggish and combustion reaction does not reach equilibrium at the combustor exit. In the case of a combustor exhaust temperature of 1573 K (1300 °C), we estimated that high CO exhaust emissions of about a few percent, in tens of milliseconds, corresponded to the combustion gas residence time in the gas turbine combustor. Combustion efficiency was estimated to reach only about 76%, which was a lower value compared to H2/O2-fired combustion while residual O2 in exhaust was 2.5 vol%, or five times as much as the equilibrium concentration. On the other hand, unburned constituents in an expansion turbine exhaust were slowed to oxidize in a heat recovery steam generator (HRSG) flue processing, and exhaust gases reached equilibrium conditions. In this regard, however, reaction heat in HRSG could not devote enough energy for combined cycle thermal efficiency, making advanced combustion technology necessary for achieving highly efficient, oxy-fuel IGCC.


Author(s):  
Shaorong Zhou ◽  
Zhaohui Du ◽  
Hanping Chen ◽  
Fangyuan Zhong

The flow and thermal fields within the cooling air injection device which is widely used to suppress the infrared (IR) signatures of a marine gas turbine exhaust system were studied numerically and experimentally. A turbulence near-wall model based on the wall function method was adopted. The discretization equations were derived for the control volumes when conjugate heat transfer exists at their interfaces, with the radiation heat flux at the interfaces appearing as an additional source term. The solution method of entrained velocities at the entrance of secondary flow was introduced. The distributions of temperature and static pressure on the diffuser surface, and the temperature of gas at the outlet of the exhaust duct were simulated numerically. The numerical calculated results agreed well with corresponding scale model experimental data. Lastly, the measured IR radiation distributions by scale model experiments at different view angles and various engine power settings, with and without IR signature suppression (IRSS) devices were presented.


1970 ◽  
Author(s):  
P. J. Torpey ◽  
R. M. Welch

The ability to predict the longitudinal temperature distribution along a gas turbine exhaust duct facilitates the selection of the proper duct material and the appropriate paint or other external coating. It also allows accurate determination of thermal expansion over the entire length. A first-order differential equation is derived from a one-dimensional heat flow model for the exhaust system. A digital computer program employing this model is also presented. The computer solution, in addition to eliminating tedious manual computation, extends the analysis capability by accounting for changes in temperature and flow-dependent variables along the duct length. Measured gas and duct wall temperatures for a 1.5-kw gas turbine exhaust system are compared with values predicted by the analysis. Good agreement is noted throughout that portion of the system in which fully developed flow exists.


Author(s):  
Michel D. Ninacs ◽  
Rodney P. Bell

This paper discusses the methods used to derive an improved design for gas turbine exhaust duct expansion joints. Typically these joints are subjected to very rapid increase in internal exhaust gas temperatures that result in large temperature differentials within the joint structures. The thermal gradients can cause stress levels in excess of yield and when the turbine is used intermittently, such as peaking power units would be, the net result is crack propagation and gas leakage.


Author(s):  
Anthony J. B. Jackson ◽  
Alcides Codeceira Neto ◽  
Matthew W. Whellens ◽  
Harry Audus

The world’s main atmospheric “greenhouse gas” is carbon dioxide (CO2). The CO2 content of the atmosphere continues to rise due to increasing world demand for energy, and thus further means are needed to achieve its abatement. Most gas turbine powered electricity generating plants use hydro-carbon fuels and this inevitably produces CO2 in the engine exhaust. This paper discusses a scheme for concentrating the gas turbine exhaust CO2, thus facilitating its extraction. The scheme is a gas turbine operating synchronously in closed cycle, with CO2 as the working fluid. The additional CO2 and water produced in the combustion process are removed continuously. CO2 and air have substantially different gas properties. This significantly affects the performance of the gas turbine. It is shown that any gas turbine designed to use air, and operating synchronously, would need considerable modifications to its compressor and combustion systems to use carbon dioxide as its working fluid.


Author(s):  
Asim Maqsood ◽  
A. M. Birk

Ejectors are commonly employed in gas turbine exhaust systems for reasons such as space ventilation and IR suppression. Ejectors may incorporate bends in the geometry for various reasons. Studies have shown that the bend has a deteriorating effect on the performance of an ejector. This work was aimed to investigate the effect of exhaust gas swirl on improving the performance of a bent ejector. Four short oblong ejectors with different degrees of bend in the mixing tube and four swirl conditions were tested in this study. The primary nozzle, in all cases, was composed of a circular to oblong transition. Testing was performed at ambient and hot primary flow with 0deg, 10deg, 20deg, and 30deg swirl angles. It was observed that the swirl had a strong affect on the performance of a bent ejector. Improvement of up to 55%, 96%, and 180% was obtained in the pumping ratio, pressure rise, and total efficiency, respectively, with a 20deg swirl in the exhaust gas.


Author(s):  
Asim Maqsood ◽  
A. M. Birk

Ejectors are commonly employed in gas turbine exhaust systems for reasons such as space ventilation and IR suppression. Ejectors may incorporate bends in the geometry for various reasons. Studies have shown that the bend has a deteriorating effect on the performance of an ejector. This work was aimed to investigate the effect of exhaust gas swirl on improving the performance of a bent ejector. Four short oblong ejectors with different degrees of bend in the mixing tube and four swirl conditions were tested in this study. The primary nozzle, in all the cases, was composed of a circular to oblong transition. Testing was performed at ambient and hot primary flow with 0, 10, 20 and 30° swirl angles. It was observed that the swirl had a strong affect on the performance of a bent ejector. Improvement of up to 55, 96 and 180% was obtained in the pumping ratio, pressure rise and total efficiency respectively with a 20° swirl in the exhaust gas.


Sign in / Sign up

Export Citation Format

Share Document