A Fluidic Technique for Measuring the Average Temperature in a Gas Turbine Exhaust Duct

1968 ◽  
Vol 90 (3) ◽  
pp. 265-270 ◽  
Author(s):  
C. G. Ringwall ◽  
L. R. Kelley

Circuit concepts and test data for a fluidic system to sense the average temperature in a gas turbine exhaust duct are presented. Phase discrimination techniques are used to sense the average wave velocity in a long tube and to produce an output pressure differential proportional to temperature error.

Author(s):  
Orlando Ugarte ◽  
Suresh Menon ◽  
Wayne Rattigan ◽  
Paul Winstanley ◽  
Priyank Saxena ◽  
...  

Abstract In recent years, there is a growing interest in blending hydrogen with natural gas fuels to produce low carbon electricity. It is important to evaluate the safety of gas turbine packages under these conditions, such as late-light off and flameout scenarios. However, the assessment of the safety risks by performing experiments in full-scale exhaust ducts is a very expensive and, potentially, risky endeavor. Computational simulations using a high fidelity CFD model provide a cost-effective way of assessing the safety risk. In this study, a computational model is implemented to perform three dimensional, compressible and unsteady simulations of reacting flows in a gas turbine exhaust duct. Computational results were validated against data obtained at the simulated conditions in a representative geometry. Due to the enormous size of the geometry, special attention was given to the discretization of the computational domain and the combustion model. Results show that CFD model predicts main features of the pressure rise driven by the combustion process. The peak pressures obtained computationally and experimentally differed in 20%. This difference increased up to 45% by reducing the preheated inflow conditions. The effects of rig geometry and flow conditions on the accuracy of the CFD model are discussed.


Author(s):  
Shaorong Zhou ◽  
Zhaohui Du ◽  
Hanping Chen ◽  
Fangyuan Zhong

The flow and thermal fields within the cooling air injection device which is widely used to suppress the infrared (IR) signatures of a marine gas turbine exhaust system were studied numerically and experimentally. A turbulence near-wall model based on the wall function method was adopted. The discretization equations were derived for the control volumes when conjugate heat transfer exists at their interfaces, with the radiation heat flux at the interfaces appearing as an additional source term. The solution method of entrained velocities at the entrance of secondary flow was introduced. The distributions of temperature and static pressure on the diffuser surface, and the temperature of gas at the outlet of the exhaust duct were simulated numerically. The numerical calculated results agreed well with corresponding scale model experimental data. Lastly, the measured IR radiation distributions by scale model experiments at different view angles and various engine power settings, with and without IR signature suppression (IRSS) devices were presented.


2021 ◽  
Author(s):  
Orlando Ugarte ◽  
Suresh Menon ◽  
Wayne Rattigan ◽  
Paul Winstanley ◽  
Priyank Saxena ◽  
...  

Abstract In recent years, there is a growing interest in blending hydrogen with natural gas fuels to produce low carbon electricity. It is important to evaluate the safety of gas turbine packages under these conditions, such as late-light off and flameout scenarios. However, the assessment of the safety risks by performing experiments in full-scale exhaust ducts is a very expensive and, potentially, risky endeavor. Computational simulations using a high fidelity CFD model provide a cost-effective way of assessing the safety risk. In this study, a computational model is implemented to perform three dimensional, compressible and unsteady simulations of reacting flows in a gas turbine exhaust duct. Computational results were validated against data obtained at the simulated conditions in a representative geometry. Due to the enormous size of the geometry, special attention was given to the discretization of the computational domain and the combustion model. Results show that CFD model predicts main features of the pressure rise driven by the combustion process. The peak pressures obtained computationally and experimentally differed in 20%. This difference increased up to 45% by reducing the preheated inflow conditions. The effects of rig geometry and flow conditions on the accuracy of the CFD model are discussed.


1970 ◽  
Author(s):  
P. J. Torpey ◽  
R. M. Welch

The ability to predict the longitudinal temperature distribution along a gas turbine exhaust duct facilitates the selection of the proper duct material and the appropriate paint or other external coating. It also allows accurate determination of thermal expansion over the entire length. A first-order differential equation is derived from a one-dimensional heat flow model for the exhaust system. A digital computer program employing this model is also presented. The computer solution, in addition to eliminating tedious manual computation, extends the analysis capability by accounting for changes in temperature and flow-dependent variables along the duct length. Measured gas and duct wall temperatures for a 1.5-kw gas turbine exhaust system are compared with values predicted by the analysis. Good agreement is noted throughout that portion of the system in which fully developed flow exists.


Author(s):  
Michel D. Ninacs ◽  
Rodney P. Bell

This paper discusses the methods used to derive an improved design for gas turbine exhaust duct expansion joints. Typically these joints are subjected to very rapid increase in internal exhaust gas temperatures that result in large temperature differentials within the joint structures. The thermal gradients can cause stress levels in excess of yield and when the turbine is used intermittently, such as peaking power units would be, the net result is crack propagation and gas leakage.


Author(s):  
Steven Farber ◽  
Wahid Ghaly

In typical gas turbine applications, combustion gases that are discharged from the turbine are exhausted into the atmosphere in a direction that is sometimes different from that of the inlet. In such cases, the design of efficient exhaust ducts is a challenging task particularly when the exhaust gases are also swirling. A parametric Computational Fluid Dynamics (CFD) based study was carried out on non-symmetric gas turbine exhaust ducts where the effects of geometry and inlet aerodynamic conditions were examined. These exhaust ducts comprise an annular inlet, a flow splitter, an annular to rectangular transition region, and an exhaust stub. The duct geometry, which is a three-dimensional complex one, is approximated with a six-parameter model (four geometric and two aerodynamic), which was coupled with a design of experiment method to generate a relatively small number of exhaust ducts. The flow in these ducts was simulated using CFD for different values of inlet swirl and aerodynamic blockage and the numerical results were reviewed so as to assess the effects of the geometric and aerodynamic parameters on the total pressure loss in the exhaust duct. These flow simulations were used as a data base to generate a total pressure loss model that designers can use as a tool to build more efficient non-symmetric gas turbine exhaust ducts.


Author(s):  
Upul DeSilva ◽  
Richard H. Bunce ◽  
Heiko Claussen

Siemens Energy, Inc. has been investigating the potential of a new approach to measuring the process gas temperature leaving the turbine of their heavy industrial gas turbine engines using an acoustic pyrometer system. This system measures the bulk temperature crossing a plane behinds the last row of turbine blades and is a non-intrusive measurement. It has the potential to replace the current intrusive multiple point measurement sensor arrays for both engine control and performance evaluation. The acoustic pyrometer is a device that measures the transit time of an acoustic pulse across the exhaust duct of the engine. An estimate of the temperature of the process fluid can be made from the transit time. Multiple passes may be made at various radial positions to improve the measurement. The gas turbine exhaust is a challenging environment for acoustic temperature measurement where there can be significant temperature stratification and high velocity. Previous applications of acoustic pyrometers to measure process gas temperature in power plants have been confined to applications such as boilers where rapid temperature changes are not expected and fluid velocity patterns are well known. The present study describes the results of acoustic pyrometer testing in an operating gas turbine engine under load using an active acoustic pyrometer system containing eight sets of transmitters and receivers, all external to the turbine exhaust flow path. This active method technology is based on the temperature dependence of the isentropic speed of sound from the simple ideal gas assumptions. Sound transmitters and receivers are mounted around the exhaust duct to measure the speed of sound. Very sophisticated topographical mapping techniques have been developed to extract temperature distribution from using any where from 2 to 8 sensors with up to 24 paths and 400 points. Cross correlation of sensor results to obtain topographical mapping of gas isotherms in a plane in full engine field tests have been conducted to prove the feasible of this technology on a gas turbine engine. The initial installation of the active acoustic pyrometer system in an engine exhaust was accomplished in 2009. All the tests indicate that the steady state measurements of the acoustic pyrometer system fall within 10C of the measured exhaust thermocouple data. An additional installation on a different model engine was subsequently made and data have been gathered and analyzed. Results of these tests are presented and future evaluation options discussed.


Author(s):  
M. H. Cunningham ◽  
A. M. Birk ◽  
W. Di Bartolomeo

When highly non-symmetric exhaust ducts are installed on a gas turbine engine, the asymmetries result in a non-uniform circumferential total pressure condition at the inlet of the duct. When testing these ducts experimentally or computationally the correct inlet conditions are often not known or cannot be reproduced. To study the sensitivity of duct performance to inlet conditions, an experimental and computational study of a non-symmetric gas turbine exhaust duct that includes a 160° turn with an annular to rectangular transition, has been carried out over a range of inlet conditions. The inlet conditions varied include circumferential total pressure profiles and swirl. The experimental studies have been carried out in cold flow with several non-uniform total pressure inlet conditions. Computational fluid dynamic (CFD) techniques validated against the experimental results, have been used to extend the range of inlet conditions beyond the range that could be obtained experimentally to those typical of an engine installation. Results show that the total pressure inlet conditions have a significant effect on the flow structure in the exhaust duct and that the performance of the exhaust duct degrades as the level of circumferential non-uniformities increase. However, trends in geometric optimization identified experimentally using cold flow and uniform total pressure inlet conditions are confirmed computationally with circumferential non-uniformities typical of actual engine operations. This suggests that although inlet conditions are important for determining the level of performance, the configuration of the optimized geometry is somewhat independent of the inlet conditions.


1974 ◽  
Vol 96 (3) ◽  
pp. 181-184 ◽  
Author(s):  
J. R. Cummins

To investigate the sources of acoustic radiation from a gas turbine exhaust, a one-seventh scale model has been constructed. The model geometrically scales the flow path downstream of the rotating parts including support struts and turning vanes. A discussion and comparison of different kinds of aerodynamic and acoustic scaling techniques are given. The effect of the temperature ratio between model and prototype is found to be an important parameter in comparing acoustical data.


Author(s):  
W. V. Hambleton

This paper represents a study of the overall problems encountered in large gas turbine exhaust heat recovery systems. A number of specific installations are described, including systems recovering heat in other than the conventional form of steam generation.


Sign in / Sign up

Export Citation Format

Share Document