Wave loading on offshore structures: a review

1984 ◽  
Vol 31 (12) ◽  
pp. 905
1986 ◽  
Vol 173 ◽  
pp. 667-681 ◽  
Author(s):  
James Lighthill

This article is aimed at relating a certain substantial body of established material concerning wave loading on offshore structures to fundamental principles of mechanics of solids and of fluids and to important results by G. I. Taylor (1928a,b). The object is to make some key parts within a rather specialised field accessible to the general fluid-mechanics reader.The article is concerned primarily to develop the ideas which validate a separation of hydrodynamic loadings into vortex-flow forces and potential-flow forces; and to clarify, as Taylor (1928b) first did, the major role played by components of the potential-flow forces which are of the second order in the amplitude of ambient velocity fluctuations. Recent methods for calculating these forces have proved increasingly important for modes of motion of structures (such as tension-leg platforms) of very low natural frequency.


Author(s):  
M. K. Abu Husain ◽  
N. I. Mohd Zaki ◽  
G. Najafian

Offshore structures are exposed to random wave loading in the ocean environment and hence the probability distribution of the extreme values of their response to wave loading is required for their safe and economical design. To this end, the conventional (Monte Carlo) time simulation technique (CTS) is frequently used for predicting the probability distribution of the extreme values of response. However, this technique suffers from excessive sampling variability and hence a large number of simulated extreme responses (hundreds of simulated response records) are required to reduce the sampling variability to acceptable levels. In this paper, three different versions of a more efficient time simulation technique (ETS) are compared by exposing a test structure to sea states of different intensity. The three different versions of the ETS technique take advantage of the good correlation between extreme responses and their corresponding surface elevation extreme values, or quasi-static and dynamic linear extreme responses.


Author(s):  
Y. Wang ◽  
H. Mallahzadeh ◽  
M. K. Abu Husain ◽  
N. I. Mohd Zaki ◽  
G. Najafian

Offshore structures are exposed to random wave loading in the ocean environment and hence the probability distribution of the extreme values of their response to wave loading is required for their safe and economical design. This paper investigates the suitability of the Gumbel, the Generalized Extreme Value (GEV), and the Generalized Pareto (GP) distributions for modelling of extreme responses by comparing them with empirical distributions derived from extensive Monte Carlo time simulations. It will be shown that none of these distributions can model the extreme values adequately but that a mixed distribution consisting of both GEV and GP distributions seems to be capable of modelling the extreme responses with very good accuracy.


Author(s):  
B. Asgarian ◽  
A. Mohebbinejad ◽  
R. H. Soltani

Dynamic response of offshore platforms subjected to wave and current is of fundamental importance in analysis. The first step in dynamic analysis is computing dynamic characteristics of the structure. Because of pile-soil-structure and fluid-structure interactive effects in the dynamic behavior, the model is very complex. In this paper a simplified model for dynamic response of jacket-type offshore structures subjected to wave loading is used. Since wave loads on offshore platforms vary with time, they produce dynamic effects on structures. In the model used in this paper, all of the structural elements are modeled as vertical equivalent cylinders that are in the direction of the wave crest. In the simplified model, the degrees of freedom are considered at the seabed, jacket horizontal elevations and topside center of gravity. The stiffness properties of the model are computed considering the stiffnesses of the vertical bracings, legs and piles. The structural mass is considered as lumped nodal masses at horizontal elevations and topside center of gravity. The hydrodynamic added mass in addition to the structural masses was modeled at jacket horizontal elevations. In the simplified model, for computing wave loading, the projected areas of all members in the direction of the wave crest are considered. For the wave loading calculation, Morison equation is considered. The fluid velocities are calculated for the submerged portions of the structures using a computer program developed for this purpose. In this program both Airy and Stokes wave theories can be used. This model can be used to assess dynamic properties and responses of jacket type offshore structures. The model is used to assess the response of three jacket-type offshore platforms in Persian Gulf subjected to loadings due to several waves. The results in terms of dynamic characteristics and responses were compared with the more accurate analysis results using SACS software. The results are in a good agreement with the SACS analysis outputs, i.e. structural periods, mode shapes and dynamic response.


Author(s):  
M. K. Abu Husain ◽  
G. Najafian

Offshore structures are exposed to random wave loading in the ocean environment and hence the probability distribution of the extreme values of their response to wave loading is required for their safe and economical design. To this end, the conventional simulation technique (CTS) is frequently used for predicting the probability distribution of the extreme values of response. However, this technique suffers from excessive sampling variability and hence a large number of simulated response extreme values (hundreds of simulated response records) are required to reduce the sampling variability to acceptable levels. In this paper, a more efficient version of the time simulation technique (ETS) is introduced to derive the probability distribution of response extreme values from a much smaller sample of simulated extreme values.


Author(s):  
N. I. Mohd Zaki ◽  
M. K. Abu Husain ◽  
N. A. Mukhlas ◽  
G. Najafian

Offshore structures are exposed to random wave loading in the ocean environment, and hence the probability distribution of the extreme values of their response to wave loading is of great value in the design of these structures. Due to nonlinearity of the drag component of Morison’s wave loading and also due to intermittency of wave loading on members in the splash zone, the response is often non-Gaussian; therefore, simple techniques for derivation of the probability distribution of extreme responses are not available. However, it has recently been shown that the short-term response of an offshore structure exposed to Morison wave loading can be approximated by the response of an equivalent finite-memory nonlinear system (FMNS). Previous investigation has shown that the developed FMNS models perform better for high Hs values and that their performance for low Hs value is not particularly good. In this paper, MFMNS technique, a modified version of FMNS models is discussed. The improvement in MFMNS model is simply achieved by dividing the structure into two zones (Zones 1 and 2) so that the horizontal distance between the nodes in each zone is relatively small compared to the wavelengths. It is shown that MFMNS technique can be used to determine the short-term probability distribution of the extreme responses accurately with great efficiency.


2021 ◽  
Author(s):  
Mahesh Sonawane ◽  
Rohit Vaidya ◽  
Hunter Haeberle

Abstract Typically, the design of all offshore risers focuses on environmental loads i.e. wave loading, wind loads and currents. While these loads are ubiquitous in an offshore environment, accidental loading in the form earthquake induced seismic loads is an important criterion in the design of offshore structures. API RP 2A recommends site-specific studies as a basis for developing the ground motion specification of the design criteria, particularly for sites in areas of high seismicity (Zones 3–5). Seismic loads are low probability events in most cases and there isn't enough data in the initial pre-FEED / FEED phase of project to conduct seismic studies on the riser systems. Designers have to rely on past experience, code guidance, and assumptions for design data. In this paper through the means of two (2) case studies for a region prone with high seismic activities, we will demonstrate the challenges of designing rigid High-Pressure Riser Systems for seismic loads. A comparison will be provided for assumed loads based on code guidance and loads derived from preliminary seismic studies. In addition, comparisons will be provided for the final design loads achieved after the detailed platform design. The results will show the risks of relying solely on one source of data in the design process that can imperil the fabrication / procurement process with redesign due to unforeseen loads. Design optimization through proper centralization and other mitigation strategies will be presented for the benefits of future concrete based fixed platform projects.


Author(s):  
K. M. Theresa Kleefsman ◽  
Geert Fekken ◽  
Arthur E. P. Veldman ◽  
Tim H. J. Bunnik ◽  
Bas Buchner ◽  
...  

Results of computer simulation of wave and green water loading on floating offshore structures are presented. The simulation program used is a CFD code which solves the Navier-Stokes equations that describe flow of incompressible viscous fluids. The Navier-Stokes equations are discretised using a Finite Volume method on a Cartesian grid with staggered variables. The free surface is displaced using a Volume Of Fluid based algorithm combined with a local height function. In this paper results of validation and sensitivity tests of simulation of green water on the foredeck of an FPSO are presented. Here, the waves are modeled as a dam of water around the deck which is suddenly released. Furthermore, wave loading from impact of regular waves on a SPAR platform is computed and compared with experimental results. The program is found to be robust and the computational results show good agreement with the experiments.


Sign in / Sign up

Export Citation Format

Share Document