Hydrodynamic Wave Loading on Offshore Structures

Author(s):  
R Lubeena ◽  
Vinaykumar Gupta
1986 ◽  
Vol 173 ◽  
pp. 667-681 ◽  
Author(s):  
James Lighthill

This article is aimed at relating a certain substantial body of established material concerning wave loading on offshore structures to fundamental principles of mechanics of solids and of fluids and to important results by G. I. Taylor (1928a,b). The object is to make some key parts within a rather specialised field accessible to the general fluid-mechanics reader.The article is concerned primarily to develop the ideas which validate a separation of hydrodynamic loadings into vortex-flow forces and potential-flow forces; and to clarify, as Taylor (1928b) first did, the major role played by components of the potential-flow forces which are of the second order in the amplitude of ambient velocity fluctuations. Recent methods for calculating these forces have proved increasingly important for modes of motion of structures (such as tension-leg platforms) of very low natural frequency.


Author(s):  
M. K. Abu Husain ◽  
N. I. Mohd Zaki ◽  
G. Najafian

Offshore structures are exposed to random wave loading in the ocean environment and hence the probability distribution of the extreme values of their response to wave loading is required for their safe and economical design. To this end, the conventional (Monte Carlo) time simulation technique (CTS) is frequently used for predicting the probability distribution of the extreme values of response. However, this technique suffers from excessive sampling variability and hence a large number of simulated extreme responses (hundreds of simulated response records) are required to reduce the sampling variability to acceptable levels. In this paper, three different versions of a more efficient time simulation technique (ETS) are compared by exposing a test structure to sea states of different intensity. The three different versions of the ETS technique take advantage of the good correlation between extreme responses and their corresponding surface elevation extreme values, or quasi-static and dynamic linear extreme responses.


2015 ◽  
Vol 114 ◽  
pp. 218-231 ◽  
Author(s):  
Rik Wemmenhove ◽  
Roel Luppes ◽  
Arthur E.P. Veldman ◽  
Tim Bunnik

Author(s):  
Y. Wang ◽  
H. Mallahzadeh ◽  
M. K. Abu Husain ◽  
N. I. Mohd Zaki ◽  
G. Najafian

Offshore structures are exposed to random wave loading in the ocean environment and hence the probability distribution of the extreme values of their response to wave loading is required for their safe and economical design. This paper investigates the suitability of the Gumbel, the Generalized Extreme Value (GEV), and the Generalized Pareto (GP) distributions for modelling of extreme responses by comparing them with empirical distributions derived from extensive Monte Carlo time simulations. It will be shown that none of these distributions can model the extreme values adequately but that a mixed distribution consisting of both GEV and GP distributions seems to be capable of modelling the extreme responses with very good accuracy.


Author(s):  
B. Asgarian ◽  
A. Mohebbinejad ◽  
R. H. Soltani

Dynamic response of offshore platforms subjected to wave and current is of fundamental importance in analysis. The first step in dynamic analysis is computing dynamic characteristics of the structure. Because of pile-soil-structure and fluid-structure interactive effects in the dynamic behavior, the model is very complex. In this paper a simplified model for dynamic response of jacket-type offshore structures subjected to wave loading is used. Since wave loads on offshore platforms vary with time, they produce dynamic effects on structures. In the model used in this paper, all of the structural elements are modeled as vertical equivalent cylinders that are in the direction of the wave crest. In the simplified model, the degrees of freedom are considered at the seabed, jacket horizontal elevations and topside center of gravity. The stiffness properties of the model are computed considering the stiffnesses of the vertical bracings, legs and piles. The structural mass is considered as lumped nodal masses at horizontal elevations and topside center of gravity. The hydrodynamic added mass in addition to the structural masses was modeled at jacket horizontal elevations. In the simplified model, for computing wave loading, the projected areas of all members in the direction of the wave crest are considered. For the wave loading calculation, Morison equation is considered. The fluid velocities are calculated for the submerged portions of the structures using a computer program developed for this purpose. In this program both Airy and Stokes wave theories can be used. This model can be used to assess dynamic properties and responses of jacket type offshore structures. The model is used to assess the response of three jacket-type offshore platforms in Persian Gulf subjected to loadings due to several waves. The results in terms of dynamic characteristics and responses were compared with the more accurate analysis results using SACS software. The results are in a good agreement with the SACS analysis outputs, i.e. structural periods, mode shapes and dynamic response.


Author(s):  
M. K. Abu Husain ◽  
G. Najafian

Offshore structures are exposed to random wave loading in the ocean environment and hence the probability distribution of the extreme values of their response to wave loading is required for their safe and economical design. To this end, the conventional simulation technique (CTS) is frequently used for predicting the probability distribution of the extreme values of response. However, this technique suffers from excessive sampling variability and hence a large number of simulated response extreme values (hundreds of simulated response records) are required to reduce the sampling variability to acceptable levels. In this paper, a more efficient version of the time simulation technique (ETS) is introduced to derive the probability distribution of response extreme values from a much smaller sample of simulated extreme values.


Author(s):  
Robert Brian Mayon ◽  
Zoheir Sabeur ◽  
Mingyi Tan ◽  
Kamal Djidjeli

Hydrodynamic wave loading at coastal structures is a complex phenomenon to quantify. The chaotic nature of the fluid flow field as waves break against such structures has presented many challenges to Scientists and Engineers for the design of coastal defences. The provision of installations such as breakwaters to resist wave loading and protect coastal areas has evolved predominantly through empirical and experimental observations. This is due to the challenging understanding and quantification of wave impact energy transfer processes with air entrainment at these structures. This paper presents a numerical investigation on wave loading at porous formations including the effects of air entrapment. Porous morphologies generated from cubic packed spheres with varying characteristics representing a breakwater structure are incorporated into the numerical model at the impact interface and the effect on the pressure field is investigated as the wave breaks. We focus on analysing the impulse impact pressure as a surging flow front impacts a porous wall. Thereafter we investigate the multi-modal oscillatory wave impact pressure signals which result from a transient plunging breaker wave impinging upon a modelled porous coastal protective structure. The high frequency oscillatory pressure effects resulting from air entrapment are clearly observed in the simulations. A frequency domain analysis of the impact pressure responses is undertaken. We show that the structural morphology of the porous assembly influences the pressure response signal recorded during the impact event. The findings provide good confidence on the robustness of our numerical model particularly for investigating the air bubbles formation and their mechanics at impact with porous walls.


Author(s):  
N. I. Mohd Zaki ◽  
M. K. Abu Husain ◽  
N. A. Mukhlas ◽  
G. Najafian

Offshore structures are exposed to random wave loading in the ocean environment, and hence the probability distribution of the extreme values of their response to wave loading is of great value in the design of these structures. Due to nonlinearity of the drag component of Morison’s wave loading and also due to intermittency of wave loading on members in the splash zone, the response is often non-Gaussian; therefore, simple techniques for derivation of the probability distribution of extreme responses are not available. However, it has recently been shown that the short-term response of an offshore structure exposed to Morison wave loading can be approximated by the response of an equivalent finite-memory nonlinear system (FMNS). Previous investigation has shown that the developed FMNS models perform better for high Hs values and that their performance for low Hs value is not particularly good. In this paper, MFMNS technique, a modified version of FMNS models is discussed. The improvement in MFMNS model is simply achieved by dividing the structure into two zones (Zones 1 and 2) so that the horizontal distance between the nodes in each zone is relatively small compared to the wavelengths. It is shown that MFMNS technique can be used to determine the short-term probability distribution of the extreme responses accurately with great efficiency.


Sign in / Sign up

Export Citation Format

Share Document