The impact of aluminium on green algae isolated from two hydrochemically different headwater streams, Bavaria, Germany

1990 ◽  
Vol 67 (1) ◽  
pp. 61-77 ◽  
Author(s):  
Jörg Lindemann ◽  
Elisabeth Holtkamp ◽  
Reimer Herrmann
2018 ◽  
Vol 0 (0) ◽  
Author(s):  
Marieta Hristozkova ◽  
Liliana Gigova ◽  
Maria Geneva ◽  
Ira Stancheva ◽  
Ivanina Vasileva ◽  
...  

Abstract Mycorrhizal fungi, algae and cyanobacteria are some of the most important soil microorganisms and major components of a sustainable soil-plant system. This study presents for the first time evidence of the impact of green alga and cyanobacterium solely and in combination with arbuscular mycorrhizal fungi (AMF) on plant-antioxidant capacity. In order to provide a better understanding of the impact of AMF and soil microalgae on Ocimum basilicum L. performance, changes in the pattern and activity of the main antioxidant enzymes (AOEs), esterases and non-enzymatic antioxidants including phenols, flavonoids, ascorbate, and α-tocopherols were evaluated. The targeted inoculation of O. basilicum with AMF or algae (alone and in combination) enhanced the antioxidant capacity of the plants and the degree of stimulation varied depending on the treatment. Plants in symbiosis with AMF exhibited the highest antioxidant potential as was indicated by the enhanced functions of all studied leaf AOEs: 1.5-, 2- and more than 10-fold rises of superoxide dismutase (SOD), glutathione-S-transferase (GST) and glutathione reductase (GR), respectively. The greatest increase in the total esterase activity and concentration of phenols, flavonoids and ascorbate was marked in the plants with simultaneous inoculation of mycorrhizal fungi and the green algae. 2,2-diphenyl-1-pycril-hydrazyl (DPPH) free radical scavenging method and ferric reducing antioxidant power (FRAP) assay proved the increased plant antioxidant capacity after co-colonization of green algae and mycorrhizae.


Author(s):  
Н. І. Авраменко

Розглядаються основні чинники, які дадуть змогузнизити чисельність синьо-зелених водоростей –головних збудників процесу евтрофікації. Встанов-лено інтенсивність процесу евтрофікації води врічці Ворскла. Визначено оптимальні умови длярозвитку ціанобактерій. Наведено результатидосліджень із вивчення впливу різних хімічних ре-човин на розмноження мікроорганізмів. Охаракте-ризовано евтрофікаційні процеси річки Ворскла, зякої проводився збір агроекологічної інформації;вказано кількісний склад синьо-зелених водорос-тей. Розроблено заходи боротьби з процесамиевтрофікації води в річці Ворскла. The main factors that help to reduce the number of bluegreenalgae are considered. The intensity of the processof eutrophication of water in the river Vorskla has beenestablished. The optimal conditions for cyanobacteriahave been determined. The results of studies on examinationof the impact of various chemicals on the reproductionof microorganisms have been presented. Eutrophicationprocesses of the Vorskla River from whichagroecological information was collected have been characterised.The number of blue-green algae has been specified.The measures on control of eutrophication processof water in the river Vorskla have been developed.


2017 ◽  
Author(s):  
Aurélien Beaufort ◽  
Nicolas Lamouroux ◽  
Hervé Pella ◽  
Thibault Datry ◽  
Eric Sauquet

Abstract. Headwater streams represent a substantial proportion of river systems and have frequently flows intermittence due to their upstream position in the network. These intermittent rivers and ephemeral streams have recently seen a marked increase in interest, especially to assess the impact of drying on aquatic ecosystems. The objective of this paper is to quantify how discrete (in space and time) field observations of flow intermittence help to extrapolate the daily probability of drying at the regional scale. Two empirical models based on linear or logistic regressions have been developed to predict the daily probability of intermittence at the regional scale across France. Explanatory variables were derived from available daily discharge and groundwater level data of a dense gauging/piezometer network, and models were calibrated using discrete series of field observations of flow intermittence. The robustness of the models was tested using (1) an independent, dense regional data set of intermittence observations, (2) observations of the year 2017 excluded from the calibration. The resulting models were used to simulate the regional probability of drying in France: (i) over the period 2011–2017 to identify the regions most affected by flow intermittence; (ii) over the period 1989–2017, using a reduced input dataset, to analyze temporal variability of flow intermittence at the national level. The two regressions models performed equally well between 2011 and 2017. The accuracy of predictions depended on the number of continuous gauging/piezometer stations and intermittence observations available to calibrate the regressions. Regions with the highest performance were located in sedimentary plains, where the monitoring network was dense and where the regional probability of drying was the highest. Conversely, worst performances were obtained in mountainous regions. Finally, temporal projections (1989–2016) suggested highest probabilities of intermittence (> 35 %) in 1989–1991, 2003 and 2005. A high density of intermittence observations improved the information provided by gauging stations and piezometers to extrapolate the spatial distribution of intermittent rivers and ephemeral streams.


Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1473
Author(s):  
Saber Moradinejad ◽  
Dries Vandamme ◽  
Caitlin M. Glover ◽  
Tahere Zadfathollah Seighalani ◽  
Arash Zamyadi

The co-occurrence of non-toxic phytoplankton alongside cyanobacteria adds to the challenge of treating source waters with harmful algal blooms. The non-toxic species consume the oxidant and, thereby, reduce the efficacy of oxidation of both the extracellular and intracellular cyanotoxins. In this work, a 3D printed mini-hydrocyclone was used to separate a mixture of non-toxic green algae, Scenedesmus obliquus, from a toxic species of cyanobacteria, Microcystis aeruginosa. When water is pumped through the mini-hydrocyclone, cells exit through an overflow or underflow port depending on their size, shape, and density relative to the other cells and particles in the water matrix. The overflow port contains the cells that are smaller and less dense since these particles move toward the center of the hydrocyclone. In this work, the majority (>93%) of Microcystis cells were found in the overflow while the underflow contained primarily the Scenedesmus (>80%). This level of separation efficiency was maintained over the 30-min experiment and the majority of both cells (>86%) remained viable following the separation, which indicates that the pumping combined with forces exerted within the mini-hydrocyclone were not sufficient to cause cell death. The impact of free chlorine on the cells both pre-separation and post-separation was evaluated at two doses (1 and 2 mg/L). After separation, the overflow, which contained primarily Microcystis, had at least a 24% reduction in the free chlorine decay rate as compared to the feed water, which contained both species. This reduction in chlorine consumption shows that the cells separated via mini-hydrocyclone would likely require lower doses of oxidant to produce a similar level of degradation of the cyanotoxins present in either the extracellular or intracellular form. However, future work should be undertaken to evaluate this effect in natural bloom samples.


2010 ◽  
Vol 56 (2) ◽  
pp. 259-263 ◽  
Author(s):  
Andy Reuner ◽  
Steffen Hengherr ◽  
Franz Brümmer ◽  
Ralph O. Schill

Abstract The impact of starvation and anhydrobiosis on the number and size of the storage cells in the tardigrade species Milnesium tardigradum, Paramacrobiotus tonollii and Macrobiotus sapiens was investigated to gain more insight on the energetic side of anhydrobiosis. Storage cells are free floating cells within the body cavity of tardigrades and are presumed to store and release energy in form of glycogen, protein and fat to maintain a constant nutrient regime for the other tissues. The body size of the animals was not correlated with the size of the storage cells, however, M. tardigradum the largest species analysed also had the largest storage cells. A reduction in the size of the storage cells is apparent in all three species after seven days of starvation. A seven-day period of anhydrobiosis leads to a decrease in cell size in M. tardigradum but not in P. tonollii and M. sapiens. Although M. sapiens was raised on green algae, and M. tardigradum and P. tonollii were fed with rotifers and nematodes this difference in nourishment was not reflected in the response of the storage cells to anhydrobiosis.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1703
Author(s):  
Mohamed A. Hassaan ◽  
Ahmed El Nemr ◽  
Marwa R. Elkatory ◽  
Ahmed Eleryan ◽  
Safaa Ragab ◽  
...  

One of the dominant species of green algae growing along the Mediterranean coast of Egypt is Ulva lactuca. Pretreatment can have a major effect on biogas production because hydrolysis of the algae cell wall structure is a rate-limiting stage in the anaerobic digestion (AD) process. The use of ozone, a new pretreatment, to boost biogas production from the green algae Ulva lactuca was investigated in this study. Ozonation at various dosages was used in contrast to untreated biomass, and the effect on the performance of subsequent mesophilic AD using two separate inoculums (cow manure and activated sludge) was examined. The findings indicated that, in different studies, ozonation pretreatment showed a substantial increase in biogas yield relative to untreated algae. With an ozone dose of 249 mg O3 g–1 VS algal for Ulva lactuca, the highest biogas output (498.75 mL/g VS) was achieved using cow manure inoculum. The evaluation of FTIR, TGA, SEM, and XRD revealed the impact of O3 on the structure of the algal cell wall and integrity breakage, which was thus established as the main contributor to improving the biogas production.


Sign in / Sign up

Export Citation Format

Share Document