Fibronectin isoform gene expression in rat hepatic stellate and parenchymal cells of normal and fibrotic liver . Laboratory for Cell Biology and Histology, (1) Laboratory for Toxicology, Free University Brussels (V.U.B.), and (2) Department of Anatomy, University of Helsinki

Hepatology ◽  
1995 ◽  
Vol 22 (4) ◽  
pp. A369
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Xiaoxiang Hu ◽  
Xiaolei Liu ◽  
Chen Li ◽  
Yulu Zhang ◽  
Chengyao Li ◽  
...  

Abstract Background Parasites of the genus Trichinella are the pathogenic agents of trichinellosis, which is a widespread and severe foodborne parasitic disease. Trichinella spiralis resides primarily in mammalian skeletal muscle cells. After invading the cells of the host organism, T. spiralis must elude or invalidate the host’s innate and adaptive immune responses to survive. It is necessary to characterize the pathogenesis of trichinellosis to help to prevent the occurrence and further progression of this disease. The aims of this study were to elucidate the mechanisms of nurse cell formation, pathogenesis and immune evasion of T. spiralis, to provide valuable information for further research investigating the basic cell biology of Trichinella-infected muscle cells and the interaction between T. spiralis and its host. Methods We performed transcriptome profiling by RNA sequencing to identify global changes at 1, 3, 7, 10 and 15 days post-infection (dpi) in gene expression in the diaphragm after the parasite entered and persisted within the murine myocytes; the mice were infected by intravenous injection of newborn larvae. Gene expression analysis was based on the alignment results. Differentially expressed genes (DEGs) were identified based on their expression levels in various samples, and functional annotation and enrichment analysis were performed. Results The most extensive and dynamic gene expression responses in host diaphragms were observed during early infection (1 dpi). The number of DEGs and genes annotated in the Kyoto Encyclopedia of Genes and Genomes and Gene Ontology databases decreased significantly in the infected mice compared to the uninfected mice at 3 and 7 dpi, suddenly increased sharply at 10 dpi, and then decreased to a lower level at 15 dpi, similar to that observed at 3 and 7 dpi. The massive initial reaction of the murine muscle cells to Trichinella infection steadied in the later stages of infection, with little additional changes detected for the remaining duration of the studied process. Although there were hundreds of DEGs at each time point, only 11 genes were consistently up- or downregulated at all 5 time points. Conclusions The gene expression patterns identified in this study can be employed to characterize the coordinated response of T. spiralis-infected myocytes in a time-resolved manner. This comprehensive dataset presents a distinct and sensitive picture of the interaction between host and parasite during intracellular infection, which can help to elucidate how pathogens evade host defenses and coordinate the biological functions of host cells to survive in the mammalian environment.


2003 ◽  
Vol 13 (3) ◽  
pp. 249-262 ◽  
Author(s):  
Michael Ho ◽  
Eugene Yang ◽  
George Matcuk ◽  
David Deng ◽  
Nick Sampas ◽  
...  

Vascular endothelial cells maintain the interface between the systemic circulation and soft tissues and mediate critical processes such as inflammation in a vascular bed-selective fashion. To expand our understanding of the genetic pathways that underlie these specific functions, we have focused on the identification of novel genes that are differentially expressed in all endothelial cells, as well as restricted groups of this cell type. Virtual subtraction was conducted employing gene expression data deposited in public databases and 384 genes identified.11 The microarray data derived through these experiments have been deposited in the GEO expression database at the NCBI and has been given the accession number GPL217 , with others pending. Primary data and supplementary material associated with this manuscript are being deposited at the following website: http://quertermous.stanford.edu . These genes were spotted on custom microarrays, along with 288 genes identified through subtraction cloning from TGF-β-stimulated endothelial cells. Arrays were evaluated with RNA samples representing endothelial cells cultured from four vascular sources and five non-endothelial cell types. These studies identified 64 pan-endothelial markers that were differentially expressed with at least a threefold difference (range 3- to 55-fold). In addition, differences in gene expression profiles among endothelial cells from different vascular beds were identified. Validation of these findings was performed by RNA blot expression studies, and a number of the novel genes were shown to be expressed under angiogenic conditions in the developing mouse embryo. The combined tools of database mining and transcriptional profiling thus provide expanded knowledge of endothelial cell gene expression and endothelial cell biology.


Endocrinology ◽  
2003 ◽  
Vol 144 (12) ◽  
pp. 5578-5584 ◽  
Author(s):  
Philippe Linscheid ◽  
Dalma Seboek ◽  
Eric S. Nylen ◽  
Igor Langer ◽  
Mirjam Schlatter ◽  
...  

Endocrinology ◽  
2008 ◽  
Vol 150 (4) ◽  
pp. 1791-1800 ◽  
Author(s):  
Gabriela P. Finkielstain ◽  
Patricia Forcinito ◽  
Julian C. K. Lui ◽  
Kevin M. Barnes ◽  
Rose Marino ◽  
...  

Mammalian somatic growth is rapid in early postnatal life but then slows and eventually ceases in multiple tissues. We hypothesized that there exists a postnatal gene expression program that is common to multiple tissues and is responsible for this coordinate growth deceleration. Consistent with this hypothesis, microarray analysis identified more than 1600 genes that were regulated with age (1 vs. 4 wk) coordinately in kidney, lung, and heart of male mice, including many genes that regulate proliferation. As examples, we focused on three growth-promoting genes, Igf2, Mest, and Peg3, that were markedly down-regulated with age. In situ hybridization revealed that expression occurred in organ-specific parenchymal cells and suggested that the decreasing expression with age was due primarily to decreased expression per cell rather than a decreased number of expressing cells. The declining expression of these genes was slowed during hypothyroidism and growth inhibition (induced by propylthiouracil at 0–5 wk of age) in male rats, suggesting that the normal decline in expression is driven by growth rather than by age per se. We conclude that there exists an extensive genetic program occurring during postnatal life. Many of the involved genes are regulated coordinately in multiple organs, including many genes that regulate cell proliferation. At least some of these are themselves apparently regulated by growth, suggesting that, in the embryo, a gene expression pattern is established that allows for rapid somatic growth of multiple tissues, but then, during postnatal life, this growth leads to negative-feedback changes in gene expression that in turn slow and eventually halt somatic growth, thus imposing a fundamental limit on adult body size.


2003 ◽  
pp. 245-260
Author(s):  
Laura E. Via ◽  
Subramanian Dhandayuthapani ◽  
Dusanka Deretic ◽  
V. Deretic

2000 ◽  
Vol 113 (11) ◽  
pp. 1841-1849 ◽  
Author(s):  
T. Misteli

Gene expression is a fundamental cellular process. The basic mechanisms involved in expression of genes have been characterized at the molecular level. A major challenge is now to uncover how transcription, RNA processing and RNA export are organized within the cell nucleus, how these processes are coordinated with each other and how nuclear architecture influences gene expression and regulation. A significant contribution has come from cell biological approaches, which combine molecular techniques with microscopy methods. These studies have revealed that the mammalian cell nucleus is a complex but highly organized organelle, which contains numerous subcompartments. I discuss here how two essential nuclear processes - transcription and pre-mRNA splicing - are spatially organized and coordinated in vivo, and how this organization might contribute to the control of gene expression. The dynamic nature of nuclear proteins and compartments indicates a high degree of plasticity in the cellular organization of nuclear functions. The cellular organization of transcription and splicing suggest that the morphology of nuclear compartments is largely determined by the activities of the nucleus.


2019 ◽  
Vol 30 (15) ◽  
pp. 1781-1785 ◽  
Author(s):  
Piergiorgio Percipalle ◽  
Maria Vartiainen

The emerging role of cytoskeletal proteins in the cell nucleus has become a new frontier in cell biology. Actin and actin-binding proteins regulate chromatin and gene expression, but importantly they are beginning to be essential players in genome organization. These actin-based functions contribute to genome stability and integrity while affecting DNA replication and global transcription patterns. This is likely to occur through interactions of actin with nuclear components including nuclear lamina and subnuclear organelles. An exciting future challenge is to understand how these actin-based genome-wide mechanisms may regulate development and differentiation by interfering with the mechanical properties of the cell nucleus and how regulated actin polymerization plays a role in maintaining nuclear architecture. With a special focus on actin, here we summarize how cytoskeletal proteins operate in the nucleus and how they may be important to consolidate nuclear architecture for sustained gene expression or silencing.


Sign in / Sign up

Export Citation Format

Share Document