The effect of load and abrasive particle size on the material removal rate of silicon nitride artefacts

1995 ◽  
Vol 21 (5) ◽  
pp. 355-366 ◽  
Author(s):  
T.A. Stolarski ◽  
E. Jisheng ◽  
D.T. Gawne ◽  
S. Panesar
2001 ◽  
Vol 671 ◽  
Author(s):  
Chunhong Zhou ◽  
Lei Shan ◽  
S.H. Ng ◽  
Robert Hight ◽  
Andrew. J. Paszkowski ◽  
...  

ABSTRACTThis paper reports on the effect of colloidal abrasive particle size in the polishing of thermally grown silicon dioxide on 100mm diameter, P-type, (100), single crystal silicon wafers. The abrasive particle sizes were varied in six (6) slurries with pH values of 10.97 ± 0.08. The abrasive sizes were 10, 20, 50, 80, 110 and 140nm in diameter, and the slurry contained 30 weight percent abrasives. The experimental results indicate that the material removal rate (MRR) varies with the volume of the particle size. Results also confirm that there exists an optimum abrasive particle size with respect to material removal rate and surface finish. For a pad surface roughness of 5.2μm (Ra), the slurry containing 80nm particles resulted in the highest material removal rate and best surface finish. A nano-film model based on the pad roughness is used to explain the results.


Author(s):  
Murali M. Sundaram ◽  
Sreenidhi Cherku ◽  
K. P. Rajurkar

Advanced engineering materials posses excellent properties such as high wear resistance, and inertness to corrosion and chemical reactions. Since these materials are usually hard, brittle, chemically inert, and electrically nonconductive, they pose serious machinability challenges. Micro ultrasonic machining (Micro USM) is an emerging method for the micromachining of hard and brittle materials without any thermal damage. This paper presents the results of micro ultrasonic machining using oil based abrasive slurry. Details of the in-house built experimental setup used to conduct the experiments are explained. The influence of process parameters such as slurry medium, slurry concentration, and abrasive particle size on the performance of micro USM are reported. It was noticed that the evidence of three body material removal mechanism is predominant for micro USM using oil based slurry. In general, the material removal rate increases with the increase in the abrasive particle size for both aqueous abrasive slurry and oil based abrasive slurry. Further, material removal rate is consistently higher for experiments conducted with aqueous abrasive slurry medium. On the other hand, it is noticed that the oil based slurry medium provides better surface finish. It is also noticed that the smaller abrasive grains provide better surface finish for both aqueous, and oil based abrasive slurry mediums. Role of slurry concentration is ambiguous, as no clear trend of its effect of on process performance is evident in the available experimental results.


2006 ◽  
Vol 532-533 ◽  
pp. 460-463 ◽  
Author(s):  
Bing Hai Lv ◽  
Ju Long Yuan ◽  
Ying Xue Yao ◽  
Zhi Wei Wang

To improve low lapping efficiency of silicon nitride balls in conventional lapping process, fixed abrasive lapping technology for ceramic balls is investigated in this paper. Diamond abrasives and photosensitive resin are used to fabricate the fixed abrasive plate. The lapped ball surface is observed with microscopy to identify the dominant wear mechanism. The results show that the material removal rate of the fixed abrasive lapping is about 20 times of that of conventional free abrasive lapping process, and the roughness is close to the conventional one. The experimental results indicate that the fixed abrasive lapping technology is a promising process to instead of conventional free abrasive lapping process for ceramic balls in rough and semi-finishing process.


2010 ◽  
Vol 42 ◽  
pp. 170-174
Author(s):  
Cheng Guang Zhang ◽  
Xue Ling Yang ◽  
Bo Zhao

The experiment of ultrasonic assisted pulse electrochemical compound finishing is carried in this paper. The machining principle of the compound finishing is discussed in this paper. Processing experiments of compound finishing are carried out to study the effects of the main processing para- meters, including the particle size, the ultrasonic vibration amplitude, the minimum gap between the tool head and workpiece and the pulse voltage, on the material removal rate and the surface quality for hard and brittle metal materials. The curves of the corresponding relationships are also obtained. The study indicates that the processing velocity, machining accuracy and surface quality can be improved under the compound finishing, obtaining the processing technology conductions of the compound finishing. Introductions


2018 ◽  
Vol 764 ◽  
pp. 106-114
Author(s):  
Jian Bin Wang ◽  
Zhen Li ◽  
Yong Wei Zhu ◽  
Ben Chi Jiang ◽  
Pei Cheng Shi

The choice of abrasive particle size is crucial to improve the lapping efficiency and surface quality in lapping of sapphire wafer by fixed abrasive (FA) pad. A model for the penetration depth of a single abrasive is developed with fixed abrasive pad. A serious of lapping tests were carried out using FA pads embedded with different size of diamond particles to verify the validity of the developed model. Results show that the penetration depth of abrasive is related not only to the particle size, but to the hardness ratio of the work-piece to the pad as well. The material removal rate of sapphire is proportional to the square of abrasive particle size, while the average surface roughness is proportional to the abrasive particle size.


2011 ◽  
Vol 474-476 ◽  
pp. 472-477
Author(s):  
Shi Wen Du ◽  
Yong Tang Li ◽  
Jian Jun Song ◽  
Hui Ping Qi

The model proposed integrates process parameters including pressure and velocity and other important input parameters including the wafer hardness, pad roughness, abrasive size, and abrasive geometry into the formulation to predict the material removal rate. Based on the deformation of hyper-elastic asperities attached to a linear-elastic pad, contact mechanism between the asperities and the wafer is analyzed. Micro-contact mechanism between the particle and wafer is proposed on the basis of elastic-plastic deformation theory. Material removal rate of single abrasive particle is calculated by the abrasive wear theory. The fluid effect in the current model is attributed to the number of active abrasives. Wafer scale material removal rate is analyzed in detail, which is agreed with the experimental results. The Preston’s coefficient, which has been determined empirically, is now given as a function of various processing variables, pad roughness, wafer material properties and slurry status.


2008 ◽  
Vol 389-390 ◽  
pp. 187-192
Author(s):  
Yong Bo Wu ◽  
Kunio Shimada

This paper deals with the machining of quartz wafers using an MCF (Magnetic Compound Fluid) polishing liquid, frozen with liquid nitrogen. This type of polishing liquid is composed of water-based MF (Magnetic Fluid), iron powder, abrasive particle and α-cellulose, and consequently reacting to magnetic fields. Experiments of polishing quartz wafers using the MCF method were carried out on a previously developed apparatus. The results show that an MCF polishing liquid, frozen with liquid nitrogen, has greater material removal capability than one that has not been frozen. A frozen MCF polishing liquid containing larger abrasive particles yields a higher material removal rate, however the surface roughness deteriorates. The highest material removal rate and the best surface roughness were obtained when the percentage of water, in the frozen MCF polishing tool, was 34.7%.


Micromachines ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1221
Author(s):  
Zhongchen Cao ◽  
Shengqin Yan ◽  
Shipeng Li ◽  
Yang Zhang

The study of the single-particle erosion mechanism is essential to understand the material removal mechanism in the non-contact polishing process and ultimately ensure the high-efficiency, non-damage, and ultra-smooth processing of optical glass. In this study, the theoretical model of smoothed particle hydrodynamics (SPH) is established to reveal the dynamic removal process of a single particle impacting the optical glass. The single-particle erosion mechanisms, which include ductile–brittle transition, crack initiation, and propagation, are discussed in detail through theoretical simulation. A series of particle impact experiments are designed to validate the correctness of the SPH model. The experimental data show good agreement with the simulation results in terms of the depth and width of the eroded craters. Thereafter, the SPH simulation is conducted by studying the effect of various impact parameters, such as impact speed, impact angle, and abrasive diameter, on the material removal process. With the gradual increase of impact velocity and particle size, the material removal mode changes from plastic removal to brittle removal. Although the large impact velocity and particle size increase the material removal rate, they lead to the occurrence of brittle removal and reduce the surface and sub-surface quality. When the impact angle is between 45° and 75°, the material removal rate is the largest, and the increase of the material removal rate does not cause damage to the subsurface layer of the material.


2009 ◽  
Vol 76-78 ◽  
pp. 229-234 ◽  
Author(s):  
Qiu Sheng Yan ◽  
Yong Yang ◽  
Jia Bin Lu ◽  
Wei Qiang Gao

Experiments were conducted to polish optical glass with the magnetorheological (MR) effect-based tiny-grinding wheel cluster, and the influences of abrasive material, particle size and content on the material removal rate and surface roughness are investigated. The experimental results indicate that: the higher the hardness of abrasives, the higher the material removal rate, but the abrasives with lower hardness can obtain lower surface roughness. The better polishing quality of the workpiece can be obtained when the particle size of abrasives is similar to the particle size of magnetic particles. Moreover, the content of abrasives has an optimum value, and the material removal rate and the surface quality can not be improved further when the content of abrasives exceeds the optimum value. On the basis of above, the material removal model of the new planarization polishing technique is presented.


2004 ◽  
Vol 127 (3) ◽  
pp. 545-554 ◽  
Author(s):  
Wei Che ◽  
Yongjin Guo ◽  
Abhijit Chandra ◽  
Ashraf Bastawros

A scratch intersection based material removal mechanism for CMP processes is proposed in this paper. The experimentally observed deformation pattern by SEM and the trends of the measured force profiles (Che et al., 2003) reveal that, for an isolated shallow scratch, the material is mainly plowed sideway along the track of the abrasive particle with no net material removal. However, it is observed that material is detached close to the intersection zone of two scratches. Motivated by this observation, it is speculated that the deformation mechanism changes from ploughing mode to shear-segmentation mode as the abrasive particle approaches the intersection of two scratches under small indentation depth for ductile metals. The proposed mechanistic material removal rate (MRR) model yields Preston constant similar to those observed experimentally for CMP processes. The proposed model also reveals that the nature of the slurry-pad interaction mechanism, and its associated force partitioning mechanism, is important for determining the variation of MRR with particle size and concentration. It is observed that under relatively soft pads, small particles and low particle concentration, the pad undergoes local deformation, yielding an increased MRR with increasing particle size and concentration. At the other extreme, the intact walls of the surface cells and the connecting cell walls between the surface pores deform globally, resembling a beam or a plate, and a decreasing trend in MRR is observed with increasing particle size and concentration. The predicted MRR trends are compared to existing experimental observations.


Sign in / Sign up

Export Citation Format

Share Document