Effects of Nano-scale Colloidal Abrasive Particle Size on SiO2 by Chemical Mechanical Polishing

2001 ◽  
Vol 671 ◽  
Author(s):  
Chunhong Zhou ◽  
Lei Shan ◽  
S.H. Ng ◽  
Robert Hight ◽  
Andrew. J. Paszkowski ◽  
...  

ABSTRACTThis paper reports on the effect of colloidal abrasive particle size in the polishing of thermally grown silicon dioxide on 100mm diameter, P-type, (100), single crystal silicon wafers. The abrasive particle sizes were varied in six (6) slurries with pH values of 10.97 ± 0.08. The abrasive sizes were 10, 20, 50, 80, 110 and 140nm in diameter, and the slurry contained 30 weight percent abrasives. The experimental results indicate that the material removal rate (MRR) varies with the volume of the particle size. Results also confirm that there exists an optimum abrasive particle size with respect to material removal rate and surface finish. For a pad surface roughness of 5.2μm (Ra), the slurry containing 80nm particles resulted in the highest material removal rate and best surface finish. A nano-film model based on the pad roughness is used to explain the results.

Author(s):  
Murali M. Sundaram ◽  
Sreenidhi Cherku ◽  
K. P. Rajurkar

Advanced engineering materials posses excellent properties such as high wear resistance, and inertness to corrosion and chemical reactions. Since these materials are usually hard, brittle, chemically inert, and electrically nonconductive, they pose serious machinability challenges. Micro ultrasonic machining (Micro USM) is an emerging method for the micromachining of hard and brittle materials without any thermal damage. This paper presents the results of micro ultrasonic machining using oil based abrasive slurry. Details of the in-house built experimental setup used to conduct the experiments are explained. The influence of process parameters such as slurry medium, slurry concentration, and abrasive particle size on the performance of micro USM are reported. It was noticed that the evidence of three body material removal mechanism is predominant for micro USM using oil based slurry. In general, the material removal rate increases with the increase in the abrasive particle size for both aqueous abrasive slurry and oil based abrasive slurry. Further, material removal rate is consistently higher for experiments conducted with aqueous abrasive slurry medium. On the other hand, it is noticed that the oil based slurry medium provides better surface finish. It is also noticed that the smaller abrasive grains provide better surface finish for both aqueous, and oil based abrasive slurry mediums. Role of slurry concentration is ambiguous, as no clear trend of its effect of on process performance is evident in the available experimental results.


1995 ◽  
Vol 21 (5) ◽  
pp. 355-366 ◽  
Author(s):  
T.A. Stolarski ◽  
E. Jisheng ◽  
D.T. Gawne ◽  
S. Panesar

2017 ◽  
Vol 739 ◽  
pp. 157-163
Author(s):  
Guan Fu Lin ◽  
Ming Yi Tsai ◽  
Chiu Yuan Chen

This paper presents a combined diamond-impregnated lapping plate for single crystal silicon carbide (SiC) to improve the material removal rate due to SiC having very low material removal rate. Three different dimaond shapes were prepared: (1) "sharp," a sharp-edged diamod; (2) "blocky," a high quality crystalline diamond; (3) "oxidized diamond". The diamonds were manufactured by using high temperature heating method in a furnace to induce diamond oxidation resulting in improvement of Ra and sharpness of the diamonds. Three combined diamond-impregnated lapping plates were fabricated using the above mentioned diamond shapes with diamond size of 6μm. The surface roughness and removal rate of the SiC lapping with these plate were investigated. Experimental results showed that the average material removal rate (MRR) of oxidized diamond is higher than that of the other diamond shapes. The MRR of oxidized diamond for C-face and Si-face SiC are 4.72μm/hr and 6.26μm/hr, respectively. It is found that the surface roughness (Ra) of oxidized diamond for C-face and Si-face are 7.547nm and 8.06nm, respectively. This indicates that the combined diamond-impregnated lapping plate can be effectively used for SiC machining.


2000 ◽  
Vol 613 ◽  
Author(s):  
C. Zhou ◽  
L. Shan ◽  
J. R. Hight ◽  
S.H. Ng ◽  
A. J. Paszkowski ◽  
...  

ABSTRACTIn this paper, the experimental results of interfacial fluid pressure and friction measurements during polishing are presented, as well as their dependence on some major process variables. Under simulated conditions, a sub-ambient fluid pressure was observed, and its magnitude was of the same order of magnitude as the applied polishing load. Since this fluid pressure is non-uniformly distributed, the contact stress, obtained by combining the effects of both applied load and the fluid pressure, is not uniform across the wafer and will result in non-uniform material removal. The mechanism of the presence of the fluid pressure was investigated, and an analytical model was developed to predict the magnitude and distribution of this fluid pressure. The effects of the sub-ambient fluid pressure on material removal rate and profile were tested with thermally grown silicon dioxide on 100mm diameter, P-type (100), single crystal silicon wafers. The polishing experiments show the effect of sub-ambient fluid pressure on polishing rate and profile.


2008 ◽  
Vol 389-390 ◽  
pp. 510-514
Author(s):  
A.Q. Biddut ◽  
Liang Chi Zhang ◽  
Y.M. Ali

This paper experimentally investigates the effect of time and pressure on the condition of polishing pads and the material removal rate (MRR) of single crystal silicon. It was found that as the pad deteriorates with time, MRR decreases. Surfaces with a required quality can only be achieved before the texture deterioration reaches a critical limit. At a higher pressure, 25 kPa, deterioration is slower, and the effective life of pads and MRR is enhanced.


Sign in / Sign up

Export Citation Format

Share Document