Energy cost of whole-body protein synthesis measured in vivo in chicks

1988 ◽  
Vol 91 (4) ◽  
pp. 765-768 ◽  
Author(s):  
Yosuke Aoyagi ◽  
Iwao Tasaki ◽  
Jun-ichi Okumura ◽  
Tatsuo Muramatsu
Author(s):  
Jorn Trommelen ◽  
Andrew M. Holwerda ◽  
Philippe J. M. Pinckaers ◽  
Luc J. C. van Loon

All human tissues are in a constant state of remodelling, regulated by the balance between tissue protein synthesis and breakdown rates. It has been well-established that protein ingestion stimulates skeletal muscle and whole-body protein synthesis. Stable isotope-labelled amino acid methodologies are commonly applied to assess the various aspects of protein metabolism in vivo in human subjects. However, to achieve a more comprehensive assessment of post-prandial protein handling in vivo in human subjects, intravenous stable isotope-labelled amino acid infusions can be combined with the ingestion of intrinsically labelled protein and the collection of blood and muscle tissue samples. The combined application of ingesting intrinsically labelled protein with continuous intravenous stable isotope-labelled amino acid infusion allows the simultaneous assessment of protein digestion and amino acid absorption kinetics (e.g. release of dietary protein-derived amino acids into the circulation), whole-body protein metabolism (whole-body protein synthesis, breakdown and oxidation rates and net protein balance) and skeletal muscle metabolism (muscle protein fractional synthesis rates and dietary protein-derived amino acid incorporation into muscle protein). The purpose of this review is to provide an overview of the various aspects of post-prandial protein handling and metabolism with a focus on insights obtained from studies that have applied intrinsically labelled protein under a variety of conditions in different populations.


1985 ◽  
Vol 226 (1) ◽  
pp. 37-42 ◽  
Author(s):  
J J Pomposelli ◽  
J D Palombo ◽  
K J Hamawy ◽  
B R Bistrian ◽  
G L Blackburn ◽  
...  

Previous studies have reported that use of a flooding dose of radiolabelled amino acid is a more precise technique than the constant infusion of tracer quantities for determining rates of protein synthesis in rapidly turning-over tissues in the rat. However, there has been little direct investigation comparing different methods under comparable conditions. Initially, 12 healthy male Sprague-Dawley rats, weighing approx. 100 g, were randomized to receive either a bolus intravenous injection of 100 mumol of L-leucine (containing 30 microCi of [1-14C]leucine)/100 g body wt., or a continuous 2 h tracer infusion of [14C]leucine. In the second phase of the experiment, 12 additional rats were intravenously injected with 1 × 10(8) colony-forming units of Pseudomonas aeruginosa and 16 h later randomized to receive one of two infusions described above. Total protein synthesis as well as fractional synthesis rates were determined in liver, rectus muscle and whole body. Synthesis rates measured in liver, muscle and whole body were significantly higher in bacteraemic rats than in healthy rats. The flooding-dose methodology gave significantly higher estimates of protein synthesis in the liver, skeletal muscle and whole body than did the continuous-infusion method using direct measurement of the acid-soluble fraction from the respective tissue. Indirect estimates of whole-body protein synthesis based on plasma enrichments and stochastic modelling gave the lowest values.


1991 ◽  
Vol 261 (1) ◽  
pp. R106-R116
Author(s):  
N. W. Istfan ◽  
P. R. Ling ◽  
G. L. Blackburn ◽  
B. R. Bistrian

To evaluate the accuracy of in vivo estimates of protein synthesis and breakdown, measurements of plasma and tissue leucine kinetics were made in rat tumor tissues at different conditions of growth by use of constant intravenous infusion of [14C]leucine. These measurements were made in Yoshida sarcoma tumors on days 10 and 13 after implantation, with and without tumor necrosis factor (TNF) infusion and on day 10 in Walker-256 carcinosarcoma. Expressed as micromoles of leucine per gram tissue, tumor protein breakdown increased (P less than 0.01) from 0.32 +/- 0.02 to 0.52 +/- 0.09 (SE) mumol/h, with progress of the Yoshida sarcoma tumor between days 10 and 13 after implantation. Similarly, TNF increased tumor proteolysis on day 10 (0.43 +/- 0.03 mumol.h-1.g-1, P less than 0.05 vs. day 10 control) but not on day 13 after implantation of the Yoshida tumor. Estimates of growth derived from the difference between protein synthesis and breakdown rates were not statistically different from those based on actual tumor volume changes in both tumor models. However, estimates of “whole body” protein metabolism (plasma leucine flux) were not affected either by tumor aging or by treatment with TNF. This study shows that in vivo estimates of tissue protein metabolism based on our [14C]leucine constant infusion model closely reflect the growth characteristic of that tissue. A cytotoxic perfusion-independent effect for intravenous TNF on growing tumor tissue is demonstrable as increased protein breakdown. Furthermore, the commonly used concept of whole body protein metabolism, derived solely from tracer dilution in plasma, is an oversimplification.


2002 ◽  
Vol 283 (6) ◽  
pp. E1105-E1112 ◽  
Author(s):  
Zhenqi Liu ◽  
Eugene J. Barrett

The body's protein mass not only provides architectural support for cells but also serves vital roles in maintaining their function and survival. The whole body protein pool, as well as that of individual tissues, is determined by the balance between the processes of protein synthesis and degradation. These in turn are regulated by interactions among hormonal, nutritional, neural, inflammatory, and other influences. Prolonged changes in either the synthetic or degradative processes (or both) that cause protein wasting increase morbidity and mortality. The application of tracer kinetic methods, combined with measurements of the activity of components of the cellular signaling pathways involved in protein synthesis and degradation, affords new insights into the regulation of both protein synthesis and breakdown in vivo. These insights, including those from studies of insulin, insulin-like growth factor I, growth hormone, and amino acid-mediated regulation of muscle and whole body protein turnover, provide opportunities to develop and test therapeutic approaches with promise to minimize or prevent these adverse health consequences.


1989 ◽  
Vol 40 (4) ◽  
pp. 879 ◽  
Author(s):  
PM Harris ◽  
DW Dellow ◽  
BR Sinclair

An arterio-venous preparation was developed which allowed infusion into, and/or sampling from, branches of the deep circumflex iliac artery and vein supplying and draining a discrete area of skin on the abdominal flank of Romney sheep.Measurements of blood flow (using dye dilution techniques), utilization or output of energy metabolites (oxygen, glucose, lactate and acetate) and amino acid metabolism were made in relation to whole body protein and energy metabolism.Measurements on the patch suggested that blood flow to the total skin was about 6% of cardiac output but that only 1-2% of whole body oxygen utilization occurred in the skin. This was partly accounted for by a significant proportion of glucose uptake (1.15 g day-1) being anaerobically oxidized to lactate (0.41 g day-1). Measurements of protein synthesis in the patch showed that between 10 and 16% of whole body protein synthesis occurs in the skin.Results from the preparation demonstrate that it is a useful procedure to study metabolism in a defined patch of skin in the intact animal.


1994 ◽  
Vol 267 (1) ◽  
pp. E183-E186 ◽  
Author(s):  
P. De Feo ◽  
E. Volpi ◽  
P. Lucidi ◽  
G. Cruciani ◽  
F. Santeusanio ◽  
...  

The antimalaric drug chloroquine is a well known inhibitor of lysosomal proteolysis in vitro. The present study tests the hypothesis that therapeutic doses of the drug decrease proteolysis also in vivo in humans. Leucine kinetics were determined in 20 healthy volunteers given 12 and 1.5 h before the studies 250 and 500 mg, respectively, of chloroquine phosphate (n = 10) or similar tablets of placebo (n = 10). Chloroquine reduced the rates of leucine appearance, a measure of whole body proteolysis, from 2.45 +/- 0.08 to 2.19 +/- 0.08 mumol.kg-1.min-1 (P = 0.038) and those of nonoxidative leucine disposal, an estimate of whole body protein synthesis, from 2.16 +/- 0.08 to 1.95 +/- 0.06 mumol.kg-1.min-1 (P = 0.050). The drug resulted also in a marginally significant (P = 0.051) decrement in the plasma concentrations of glucose. The effects of chloroquine on protein turnover might be potentially useful in counteracting protein wasting complicating several catabolic diseases, whereas those on glucose metabolism can explain the sporadic occurrence of severe hypoglycemic episodes in malaria patients chronically treated with this drug.


1987 ◽  
Vol 24 (1) ◽  
pp. 39-43 ◽  
Author(s):  
Tatsuo MURAMATSU ◽  
Toshiyasu KATO ◽  
Jun-ichi OKUMURA ◽  
Iwao TASAKI

1991 ◽  
Vol 81 (5) ◽  
pp. 611-619 ◽  
Author(s):  
Yves Cherel ◽  
Didier Attaix ◽  
Danuta Rosolowska-Huszcz ◽  
Rajae Belkhou ◽  
Jean-Patrice Robin ◽  
...  

1. Little information is currently available on protein turnover during chronic protein loss situations. We have thus measured the whole-body and tissue protein fractional synthesis rates (ks), the whole-body fractional protein degradation rate (kd), the capacity for protein synthesis (Cs) and the efficiency of protein synthesis (kRNA) in vivo in fed and fasted (1, 5 and about 9 days) 400 g rats. 2. One day of starvation resulted in a reduced ks and an increased kd in the whole body. ks was selectively depressed in skeletal muscles, mainly owing to a reduced kRNA, and was not modified in heart, liver and skin. The contribution of skin to whole-body protein synthesis increased by 39%. 3. During the phase of protein sparing (5 days of fasting), kd in the whole body decreased below the control fed level. ks in skeletal muscles was sustained because kRNA was restored to 82–98% of the control value. 4. Rats were in a protein-wasting phase after 9 days of starvation. kd in the whole body did not increase and was actually 78% of the value observed in fed animals. By contrast, ks in the whole body and tissues decreased to 14–34% of the control values, owing to reductions in both Cs and kRNA. Whatever the duration of the fast, the contribution of the skin to whole-body protein synthesis largely exceeded that of skeletal muscle. 5. The present findings suggest that the main goal in the treatment of chronic protein loss should be to sustain protein synthesis. Our data also emphasize the importance of skin in whole-body protein synthesis in fasting and possibly in other protein loss situations.


2012 ◽  
Vol 302 (1) ◽  
pp. E52-E60 ◽  
Author(s):  
Bart B. L. Groen ◽  
Peter T. Res ◽  
Bart Pennings ◽  
Elisabeth Hertle ◽  
Joan M. G. Senden ◽  
...  

The loss of skeletal muscle mass with aging has been attributed to an impaired muscle protein synthetic response to food intake. Therefore, nutritional strategies are targeted to modulate postprandial muscle protein accretion in the elderly. The purpose of this study was to assess the impact of protein administration during sleep on in vivo protein digestion and absorption kinetics and subsequent muscle protein synthesis rates in elderly men. Sixteen healthy elderly men were randomly assigned to an experiment during which they were administered a single bolus of intrinsically l-[1-13C]phenylalanine-labeled casein protein (PRO) or a placebo (PLA) during sleep. Continuous infusions with l-[ ring-2H5]phenylalanine and l-[ ring-2H2]tyrosine were applied to assess in vivo dietary protein digestion and absorption kinetics and subsequent muscle protein synthesis rates during sleep. We found that exogenous phenylalanine appearance rates increased following protein administration. The latter stimulated protein synthesis, resulting in a more positive overnight whole body protein balance (0.30 ± 0.1 vs. 11.8 ± 1.0 μmol phenylalanine·kg−1·h−1 in PLA and PRO, respectively; P < 0.05). In agreement, overnight muscle protein fractional synthesis rates were much greater in the PRO experiment (0.045 ± 0.002 vs. 0.029 ± 0.002%/h, respectively; P < 0.05) and showed abundant incorporation of the amino acids ingested via the intrinsically labeled protein (0.058 ± 0.006%/h). This is the first study to show that dietary protein administration during sleep is followed by normal digestion and absorption kinetics, thereby stimulating overnight muscle protein synthesis. Dietary protein administration during sleep stimulates muscle protein synthesis and improves overnight whole body protein balance. These findings may provide a basis for novel interventional strategies to attenuate muscle mass loss.


1999 ◽  
Vol 96 (6) ◽  
pp. 639-646 ◽  
Author(s):  
Steven W. M. OLDE DAMINK ◽  
Ivo DE BLAAUW ◽  
Nicolaas E. P. DEUTZ ◽  
Peter B. SOETERS

Glutamine is considered to be a ‘conditionally’ essential amino acid. During situations of severe stress like sepsis or after trauma there is a fall in plasma glutamine levels, enhanced glutamine turnover and intracellular muscle glutamine depletion. Under these conditions, decreased intramuscular glutamine concentration correlates with reduced rates of protein synthesis. It has therefore been hypothesized that intracellular muscle glutamine levels have a regulatory role in muscle protein turnover rates. Administration of the glutamine synthetase inhibitor methionine sulphoximine (MSO) was used to decrease glutamine levels in male Wistar rats. Immediately after the MSO treatment (t = 0 h), and at t = 6 h and t = 12 h, rats received intraperitoneal injections (10 ml/100 g body weight) with glutamine (200 mM) to test whether this attenuated the fall in plasma and intracellular muscle glutamine. Control animals received alanine and saline after MSO treatment, while saline was also given to a group of normal rats. At t = 18 h rats received a primed constant infusion of l-[2,6-3H]phenylalanine. A three-pool compartment tracer model was used to measure whole-body protein turnover and muscle protein kinetics. Administration of MSO resulted in a 40% decrease in plasma glutamine and a 60% decrease in intracellular muscle glutamine, both of which were successfully attenuated by glutamine infusions. The decreased intracellular muscle glutamine levels had no effect on whole-body protein turnover or muscle protein kinetics. Also, glutamine supplementation did not alter these parameters. Alanine supplementation increased both hindquarter protein synthesis and breakdown but the net balance of phenylalanine remained unchanged. In conclusion, our results show that decreased plasma and muscle glutamine levels have no effect on whole-body protein turnover or muscle protein kinetics. Therefore, it is unlikely that, in vivo, the intracellular muscle concentration of glutamine is a major regulating factor in muscle protein kinetics.


Sign in / Sign up

Export Citation Format

Share Document