Daily hypocaloric feeding entrains circadian rhythms of wheel-running and body temperature in rats kept in constant darkness

1996 ◽  
Vol 211 (1) ◽  
pp. 1-4 ◽  
Author(s):  
E. Challet ◽  
A. Malan ◽  
P. Pévet
2003 ◽  
Vol 285 (5) ◽  
pp. R939-R949 ◽  
Author(s):  
Christopher S. Colwell ◽  
Stephan Michel ◽  
Jason Itri ◽  
Williams Rodriguez ◽  
J. Tam ◽  
...  

The related neuropeptides vasoactive intestinal peptide (VIP) and peptide histidine isoleucine (PHI) are expressed at high levels in the neurons of the suprachiasmatic nucleus (SCN), but their function in the regulation of circadian rhythms is unknown. To study the role of these peptides on the circadian system in vivo, a new mouse model was developed in which both VIP and PHI genes were disrupted by homologous recombination. In a light-dark cycle, these mice exhibited diurnal rhythms in activity which were largely indistinguishable from wild-type controls. In constant darkness, the VIP/PHI-deficient mice exhibited pronounced abnormalities in their circadian system. The activity patterns started ∼8 h earlier than predicted by the previous light cycle. In addition, lack of VIP/PHI led to a shortened free-running period and a loss of the coherence and precision of the circadian locomotor activity rhythm. In about one-quarter of VIP/PHI mice examined, the wheel-running rhythm became arrhythmic after several weeks in constant darkness. Another striking example of these deficits is seen in the split-activity patterns expressed by the mutant mice when they were exposed to a skeleton photoperiod. In addition, the VIP/PHI-deficient mice exhibited deficits in the response of their circadian system to light. Electrophysiological analysis indicates that VIP enhances inhibitory synaptic transmission within the SCN of wild-type and VIP/PHI-deficient mice. Together, the observations suggest that VIP/PHI peptides are critically involved in both the generation of circadian oscillations as well as the normal synchronization of these rhythms to light.


1999 ◽  
Vol 277 (3) ◽  
pp. R812-R828 ◽  
Author(s):  
B. Pitrosky ◽  
R. Kirsch ◽  
A. Malan ◽  
E. Mocaer ◽  
P. Pevet

Daily administration of melatonin or S20098, a melatonin agonist, is known to entrain the free-running circadian rhythms of rats. The effects of the duration of administration on entrainment were studied. The animals demonstrated free-running circadian rhythms (running-wheel activity, body temperature, general activity) in constant darkness. Daily infusions of melatonin or S20098 for 1, 8, or 16 h entrained the circadian rhythms to 24 h. Two daily infusions of 1 h (separated by 8 h) entrained the activity peak within the shorter time interval. The entraining properties of melatonin and S20098 were similar and were affected neither by pinealectomy nor by infusion of 1- or 8-h duration. However, with 16-h infusion, less than half of the animals became entrained. Once entrained, the phase angle between the onset of infusion and the rhythms (onset of activity or acrophase of body temperature) increased with the duration of infusion. Before entrainment, the free-running period increased with the duration of infusion, an effect that was not predictable from the phase response curve.


2012 ◽  
Vol 303 (1) ◽  
pp. R8-R18 ◽  
Author(s):  
Reiko Iwadate ◽  
Yoko Satoh ◽  
Yukino Watanabe ◽  
Hiroshi Kawai ◽  
Naomi Kudo ◽  
...  

It has been demonstrated that the function of mammalian clock gene transcripts is controlled by the binding of heme in vitro. To examine the effects of heme on biological rhythms in vivo, we measured locomotor activity (LA) and core body temperature (Tb) in a mouse model of porphyria with impaired heme biosynthesis by feeding mice a griseofulvin (GF)-containing diet. Mice fed with a 2.0% GF-containing diet (GF2.0) transiently exhibited phase advance or phase advance-like phenomenon by 1–3 h in terms of the biological rhythms of Tbor LA, respectively (both, P < 0.05) while mice were kept under conditions of a light/dark cycle (12 h:12 h). We also observed a transient, ∼0.3 h shortening of the period of circadian Tbrhythms in mice kept under conditions of constant darkness ( P < 0.01). Interestingly, the observed duration of abnormal circadian rhythms in GF2.0 mice lasted between 1 and 3 wk after the onset of GF ingestion; this finding correlated well with the extent of impairment of heme biosynthesis. When we examined the effects of therapeutic agents for acute porphyria, heme, and hypertonic glucose on the pathological status of GF2.0 mice, it was found that the intraperitoneal administration of heme (10 mg·kg−1·day−1) or glucose (9 g·kg−1·day−1) for 7 days partially reversed (50%) increases in urinary δ-aminolevulinic acids levels associated with acute porphyria. Treatment with heme, but not with glucose, suppressed the phase advance (-like phenomenon) in the diurnal rhythms ( P < 0.05) and restored the decrease of heme ( P < 0.01) in GF2.0 mice. These results suggest that impairments of heme biosynthesis, in particular a decrease in heme, may affect phase and period of circadian rhythms in animals.


2011 ◽  
Vol 300 (3) ◽  
pp. R519-R530 ◽  
Author(s):  
Jens Hannibal ◽  
Hansen M. Hsiung ◽  
Jan Fahrenkrug

Neurons of the brain's biological clock located in the hypothalamic suprachiasmatic nucleus (SCN) generate circadian rhythms of physiology (core body temperature, hormone secretion, locomotor activity, sleep/wake, and heart rate) with distinct temporal phasing when entrained by the light/dark (LD) cycle. The neuropeptide vasoactive intestinal polypetide (VIP) and its receptor (VPAC2) are highly expressed in the SCN. Recent studies indicate that VIPergic signaling plays an essential role in the maintenance of ongoing circadian rhythmicity by synchronizing SCN cells and by maintaining rhythmicity within individual neurons. To further increase the understanding of the role of VPAC2 signaling in circadian regulation, we implanted telemetric devices and simultaneously measured core body temperature, spontaneous activity, and heart rate in a strain of VPAC2-deficient mice and compared these observations with observations made from mice examined by wheel-running activity. The study demonstrates that VPAC2 signaling is necessary for a functional circadian clock driving locomotor activity, core body temperature, and heart rate rhythmicity, since VPAC2-deficient mice lose the rhythms in all three parameters when placed under constant conditions (of either light or darkness). Furthermore, although 24-h rhythms for three parameters are retained in VPAC2-deficient mice during the LD cycle, the temperature rhythm displays markedly altered time course and profile, rising earlier and peaking ∼4–6 h prior to that of wild-type mice. The use of telemetric devices to measure circadian locomotor activity, temperature, and heart rate, together with the classical determination of circadian rhythms of wheel-running activity, raises questions about how representative wheel-running activity may be of other behavioral parameters, especially when animals have altered circadian phenotype.


2008 ◽  
Vol 295 (5) ◽  
pp. R1680-R1687 ◽  
Author(s):  
Marilyn J. Duncan ◽  
Annadora J. Bruce-Keller ◽  
Clayton Conner ◽  
Pamela E. Knapp ◽  
Ruquiang Xu ◽  
...  

Patients with human immunodeficiency virus (HIV) infection exhibit changes in sleep patterns, motor disorders, and cognitive dysfunction; these symptoms may be secondary to circadian rhythm abnormalities. Studies in mice have shown that intracerebral injection of an HIV protein, transactivator of transcription (Tat), alters the timing of circadian rhythms in a manner similar to light. Therefore, we tested the hypothesis that chronic Tat expression alters circadian rhythms, especially their entrainment to a light-dark (LD) cycle, by using transgenic mice in which Tat expression in the brain was induced via a doxycycline (DOX)-sensitive, glial fibrillary-associated, protein-restricted promoter. Because opiate substance abuse, which shares comorbidity with HIV infection, also disrupts sleep, a final experiment assessed the effects of morphine exposure on circadian rhythms in wild-type and Tat transgenic mice. Mice housed in cages equipped with running wheels were fed chow with or without DOX. Experiment 1 revealed a small but significant ( P < 0.05) difference between groups in the phase angle of entrainment and a 15% decrease in the wheel running in the DOX group ( P < 0.005). During exposure to constant darkness, DOX did not alter the endogenous period length of the circadian rhythm. Experiment 2 investigated the effect of DOX on circadian rhythms in wild-type and Tat(+) mice during exposure to a normal or phase-shifted LD cycle, or morphine treatment without any change in the LD cycle. Tat induction significantly decreased wheel running but did not affect entrainment to the normal or shifted LD cycle. Morphine decreased wheel running without altering the phase angle of entrainment, and the drug's effects were independent of Tat induction. In conclusion, these findings suggest that chronic brain expression of Tat decreases locomotor activity and the amplitude of circadian rhythms, but does not affect photic entrainment or reentrainment of the murine circadian pacemaker.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A556-A556
Author(s):  
Brooke M Devries ◽  
Joseph Breuer ◽  
Alexandra Yaw ◽  
Brooke Jackson ◽  
Duong Nguyen ◽  
...  

Abstract Light provides the primary timing signal that enables fine-tuned behavioral and hormonal entrainment of circadian rhythms to the environment. Light is transmitted from the eye to the brain through the retinohypothalamic tract, where one target is the hypothalamic suprachiasmatic nucleus (SCN), which generates self-sustained circadian rhythms. The vasoactive intestinal polypeptide (VIP) expressing neurons of the SCN relay light information to peripheral cells and tissues through control of hormonal and nervous signals, allowing synchronization of molecular clocks located in individual cells throughout the body. Non-natural light cycles, ie shiftwork, and weakened SCN function through genetic manipulation, disrupt the body’s circadian rhythms, causing deregulated hormone release, metabolic disorders, and negative effects on reproductive systems such as irregular menstrual cycles and decreased sperm count. To further our understanding of how the SCN translates light information into neuroendocrine control of fertility, we conditionally deleted the SCN enriched transcription factor Ventral anterior homeobox 1 (Vax1) in post-developmental VIP neurons, generating Vax1-flox/flox:Vip-Cre+ (cKO) mice. To determine if the SCN timekeeping function was impacted in cKO mice, we single housed males and females with running wheels to examine activity during both 12-hour light/dark cycles and in constant darkness. Wheel-running behavior in constant darkness revealed a shortening of the endogenous free-running period (Tau) of the SCN. Aside from Tau, wheel running behaviors were comparable to controls. Weakened SCN output can negatively impact fertility. While on 12-hour light/dark cycles, we found a modest, but significant change in follicle stimulating hormone and estrogen in cKO females and a reduced sensitivity of GnRH neurons to kisspeptin in males. The changes in hormone release were associated with a slightly lengthened estrous cycle in cKO females and reduced sperm quality in cKO males. To identify the molecular origin of the shortened SCN period, we used immunohistochemistry and RNAscope to examine expression of Vip. We found that diestrus cKO females had a significant reduction in Vip expression at ZT16 and preliminary data suggest a reduction in the circadian clock gene Bmal1. Together, these studies identify a novel role of VAX1 in VIP neurons where VAX1 is required for VIP expression and circadian timekeeping. Loss of VAX1 in VIP neurons weakens SCN output, deregulating reproductive hormone release and modestly reducing reproductive function in both males and females.


2021 ◽  
Vol 12 ◽  
Author(s):  
Daniel Appenroth ◽  
Andreas Nord ◽  
David G. Hazlerigg ◽  
Gabriela C. Wagner

Organisms use circadian rhythms to anticipate and exploit daily environmental oscillations. While circadian rhythms are of clear importance for inhabitants of tropic and temperate latitudes, its role for permanent residents of the polar regions is less well understood. The high Arctic Svalbard ptarmigan shows behavioral rhythmicity in presence of light-dark cycles but is arrhythmic during the polar day and polar night. This has been suggested to be an adaptation to the unique light environment of the Arctic. In this study, we examined regulatory aspects of the circadian control system in the Svalbard ptarmigan by recording core body temperature (Tb) alongside locomotor activity in captive birds under different photoperiods. We show that Tb and activity are rhythmic with a 24-h period under short (SP; L:D 6:18) and long photoperiod (LP; L:D 16:8). Under constant light and constant darkness, rhythmicity in Tb attenuates and activity shows signs of ultradian rhythmicity. Birds under SP also showed a rise in Tb preceding the light-on signal and any rise in activity, which proves that the light-on signal can be anticipated, most likely by a circadian system.


1981 ◽  
Vol 241 (1) ◽  
pp. R62-R66 ◽  
Author(s):  
H. E. Albers

The circadian wheel-running rhythms of gonadectomized adult male, female, and perinatally androgenized female rats, maintained in constant darkness, were examined before and after implantation of Silastic capsules containing cholesterol (C) or estradiol-17 beta (E). The free-running period of the activity rhythm (tau) before capsule implantation tended to be shorter in animals exposed to perinatal androgen. Administration of C did not reliably alter tau in any group. E significantly shortened tau in 100% of females injected with oil on day 3 of life. In females, injected with 3.5 micrograms testosterone propionate on day 3, and males, E shortened or lengthened tau, with the direction and magnitude of this change in tau inversely related to the length of the individual's pretreatment tau. These data indicate that the presence of perinatal androgen does not eliminate the sensitivity of the circadian system of the rat to estrogen, since estrogen alters tau in a manner that depends on its pretreatment length.


1995 ◽  
Vol 268 (5) ◽  
pp. R1111-R1116 ◽  
Author(s):  
P. Depres-Brummer ◽  
F. Levi ◽  
G. Metzger ◽  
Y. Touitou

In a constant environment, circadian rhythms persist with slightly altered period lengths. Results of studies with continuous light exposure are less clear, because of short exposure durations and single-variable monitoring. This study sought to characterize properties of the oscillator(s) controlling the rat's circadian system by monitoring both body temperature and locomotor activity. We observed that prolonged exposure of male Sprague-Dawley rats to continuous light (LL) systematically induced complete suppression of body temperature and locomotor activity circadian rhythms and their replacement by ultradian rhythms. This was preceded by a transient loss of coupling between both functions. Continuous darkness (DD) restored circadian synchronization of temperature and activity circadian rhythms within 1 wk. The absence of circadian rhythms in LL coincided with a mean sixfold decrease in plasma melatonin and a marked dampening but no abolition of its circadian rhythmicity. Restoration of temperature and activity circadian rhythms in DD was associated with normalization of melatonin rhythm. These results demonstrated a transient internal desynchronization of two simultaneously monitored functions in the rat and suggested the existence of two or more circadian oscillators. Such a hypothesis was further strengthened by the observation of a circadian rhythm in melatonin, despite complete suppression of body temperature and locomotor activity rhythms. This rat model should be useful for investigating the physiology of the circadian timing system as well as to identify agents and schedules having specific pharmacological actions on this system.


Sign in / Sign up

Export Citation Format

Share Document