Shoot organogenesis in tissue culture of Drimys Winteri

1981 ◽  
Vol 23 (2) ◽  
pp. 177-180
Author(s):  
Miguel Jordan ◽  
Irma Cortes
HortScience ◽  
1996 ◽  
Vol 31 (5) ◽  
pp. 747b-747
Author(s):  
Xingping Zhang ◽  
Billy B. Rhodes

Tetraploids are needed to synthesize triploid watermelons, which produce “seedless” fruit with improved quality. Traditionally, the tetraploids are induced by applying colchicine to the growing apex of seedlings or soaking the seeds with colchicine solution. This method often produces low frequency of tetraploids and high frequency of chimeras. Breeding tetraploids takes much longer time than breeding diploids because of the low female fertility. We developed a tissue culture approach that allows breeders to develop desirable tetraploids with commercially acceptable volume of seed in 2 years. This tissue culture approach includes: 1) regenerate plants via shoot organogenesis from cotyledon tissue; 2) screen tetraploids based on leaf morphology (more serrated leaf margin and wider leaf shape) before transplanting, and confirm tetraploids based on pollen morphology (larger pollen with four copi) and/or seed characteristics; 3) self-pollinate tetraploids or cross the tetraploids with diploids to accurately estimate the female fertility; 4) micropropagate the best tetraploid(s) using axillary buds during the off-season; and 5) produce tetraploid seed from the cloned tetraploids in an isolation plot and evaluate the triploids derived from the tetraploid(s) in the following season. This approach has been practiced on more than 20 genotypes over the past 4 years.


HortScience ◽  
1995 ◽  
Vol 30 (5) ◽  
pp. 1082-1083 ◽  
Author(s):  
Rita M. Moraes-Cerdeira ◽  
Jeffrey V. Krans ◽  
James D. McChesney ◽  
Ana M.S. Pereira ◽  
Suzelei C. Franca

Cotton fibers were tested as a substitute for agar in tissue culture. The cost of agar has prompted us to search for an alternative more economical medium support. Effectiveness as a medium support was evaluated in terms of callus maintenance and shoot organogenesis using Artemisia, Agrostis, and Taxus. Taxus and Agrostis calli cultivated on liquid media with cotton fiber as medium support (25 ml of medium per gram of cotton) grew better than calli on agar (0.8% w/v). There were no significant differences in shoot organogenesis of Artemisia and Agrostis grown in 25 ml of medium per gram of cotton from those grown in agar medium.


HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1138c-1138
Author(s):  
Carol Auer ◽  
Jerry D. Cohen ◽  
Todd Cooke

The uptake and metabolism of exogenous tritium-labelled benzyl adenine was studied during the shoot induction period of petunia leaf explants in tissue culture. Transfer experiments with Petunia `MD1' leaf explants (1 cm2) on MS media with 2.2 uM BA show that 27% and 100% of the leaf explants are committed to shoot induction on days 6 and 10, respectively. To study BA uptake and metabolism, leaf explants were placed on media containing tritium-labled BA for 1, 3, 6 and 10 days. BA was taken up from the media on days 1-6. BA metabolizes were analyzed using HPLC, a UV absorbancc detector and enzymatic techniques. Metabolizes produced include: BA, BAdo, BA 7G, BA 9G, BAdoMP, BAdoDP, BAdoTP and 3 unidentified compounds. BA and BAdo were detected on days 1 and 3 but not during day 6-10, the time of shoot induction. The pool of ribotide metabolites decreased from days 1 to 10, from 26.5% of all metabolites to 1.6%. Glucosylated compounds, BA 7G and BA 9G, increased continuously from 24.9% to 69.8% between days 1 and 10. An unidentified compound C increased from 13% on day 3 to 24.8% on day 10. In separate experiments, BA uptake and metabolism were compared in two Petunia hybrida lines, St40 and TLV1, with different shoot organogenic responses in tissue culture. These data show interesting patterns of BA metabolism in relationship to shoot induction and organogenesis.


Antibiotics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 660
Author(s):  
Nataliya V. Varlamova ◽  
Yuliya I. Dolgikh ◽  
Andrey O. Blinkov ◽  
Ekaterina N. Baranova ◽  
Marat R. Khaliluev

A β-lactams that act by inhibiting the bacterial cell wall biosynthesis are one of the most common classes of antibiotics applied to suppress the growth of latent bacterial infection associated with the plant tissue culture, as well as in the Agrobacterium-mediated transformation techniques. Plant sensitivity to antibiotics usually is species-, genotype-, or even tissue-specific and mainly depends on concentrations, growth conditions, and culture system. In the presented article, we estimated a comparative effect of four β-lactam antibiotics (Claforan®, timentin, amoxicillin, and Amoxiclav®) at different concentrations in an agar-solidified Murashige and Skoog (MS) culture medium supplemented with 5 mg L−1 6-benzylaminopurine (6-BA) and 0.1 mg L−1 indole-3-acetic acid (IAA) on in vitro callus induction and shoot organogenesis from hypocotyl and cotyledon explants of two tomato cultivars (Rekordsmen, Moryana). The role of clavulanic acid in combination with amoxicillin (Amoxiclav®) in the shoot organogenesis frequency and number of shoots per explant has been demonstrated. Additionally, the growth inhibition of Agrobacterium tumefaciens AGL0 strain according to agar disk-diffusion assay was studied. As a result, both stimulatory (timentin, amoxicillin, and Amoxiclav®) and inhibitory (Claforan®) effects of β-lactam antibiotics on in vitro morphogenetic responses of tomato were noted. It was found that clavulanic acid, which is part of the commercial antibiotic Amoxiclav®, significantly increased the shoot regeneration frequency from cotyledon and hypocotyl explants of Rekordsmen tomato cultivar. Possible reasons for the stimulating effect of clavulanic acid on the induction of shoot organogenesis are discussed. According to agar disk-diffusion assay, the maximum diameter of growth inhibition zones (43.9 mm) was identified using 200 mg L−1 timentin. The in vitro antibacterial activity of tested β-lactam antibiotics was arranged in the following order: timentin > Claforan® > amoxicillin ≥ Amoxiclav®. Thus, to suppress the growth of internal and latent bacterial infection of tomato plant tissue culture, as well as for transformation of Moryana and Rekordsmen cultivars by A. tumefaciens strain AGL0, we recommend adding of 100–200 mg L−1 timentin or 400–800 mg L−1 Amoxiclav® to the shoot induction medium.


Author(s):  
Adrian F. van Dellen

The morphologic pathologist may require information on the ultrastructure of a non-specific lesion seen under the light microscope before he can make a specific determination. Such lesions, when caused by infectious disease agents, may be sparsely distributed in any organ system. Tissue culture systems, too, may only have widely dispersed foci suitable for ultrastructural study. In these situations, when only a few, small foci in large tissue areas are useful for electron microscopy, it is advantageous to employ a methodology which rapidly selects a single tissue focus that is expected to yield beneficial ultrastructural data from amongst the surrounding tissue. This is in essence what "LIFTING" accomplishes. We have developed LIFTING to a high degree of accuracy and repeatability utilizing the Microlift (Fig 1), and have successfully applied it to tissue culture monolayers, histologic paraffin sections, and tissue blocks with large surface areas that had been initially fixed for either light or electron microscopy.


Author(s):  
L. Z. de Tkaczevski ◽  
E. de Harven ◽  
C. Friend

Despite extensive studies, the correlation between the morphology and pathogenicity of murine leukemia viruses (MLV) has not yet been clarified. The virus particles found in the plasma of leukemic mice belong to 2 distinct groups, 1 or 2% of them being enveloped A particles and the vast majority being of type C. It is generally believed that these 2 types of particles represent different phases in the development of the same virus. Particles of type A have been thought to be an earlier form of type C particles. One of the tissue culture lines established from Friend leukemia solid tumors has provided the material for the present study. The supernatant fluid of the line designated C-1A contains an almost pure population of A particles as illustrated in Figure 1. The ratio is, therefore, the reverse of what is unvariably observed in the plasma of leukemic mice where C particles predominate.


Author(s):  
A. M. Watrach

During a study of the development of infectious laryngotracheitis (LT) virus in tissue culture cells, unusual tubular formations were found in the cytoplasm of a small proportion of the affected cells. It is the purpose of this report to describe the morphologic characteristics of the tubules and to discuss their possible association with the development of virus.The source and maintenance of the strain of LT virus have been described. Prior to this study, the virus was passed several times in chicken embryo kidney (CEK) tissue culture cells.


Author(s):  
Lee F. Ellis ◽  
Richard M. Van Frank ◽  
Walter J. Kleinschmidt

The extract from Penicillum stoliniferum, known as statolon, has been purified by density gradient centrifugation. These centrifuge fractions contained virus particles that are an interferon inducer in mice or in tissue culture. Highly purified preparations of these particles are difficult to enumerate by electron microscopy because of aggregation. Therefore a study of staining methods was undertaken.


Author(s):  
R. Stephens ◽  
G. Schidlovsky ◽  
S. Kuzmic ◽  
P. Gaudreau

The usual method of scraping or trypsinization to detach tissue culture cell sheets from their glass substrate for further pelletization and processing for electron microscopy introduces objectionable morphological alterations. It is also impossible under these conditions to study a particular area or individual cell which have been preselected by light microscopy in the living state.Several schemes which obviate centrifugation and allow the embedding of nondetached tissue culture cells have been proposed. However, they all preserve only a small part of the cell sheet and make use of inverted gelatin capsules which are in this case difficult to handle.We have evolved and used over a period of several years a technique which allows the embedding of a complete cell sheet growing at the inner surface of a tissue culture roller tube. Observation of the same cell by light microscopy in the living and embedded states followed by electron microscopy is performed conveniently.


Author(s):  
S. E. Miller

The techniques for detecting viruses are many and varied including FAT, ELISA, SPIRA, RPHA, SRH, TIA, ID, IEOP, GC (1); CF, CIE (2); Tzanck (3); EM, IEM (4); and molecular identification (5). This paper will deal with viral diagnosis by electron microscopy and will be organized from the point of view of the electron microscopist who is asked to look for an unknown agent--a consideration of the specimen and possible agents rather than from a virologist's view of comparing all the different viruses. The first step is to ascertain the specimen source and select the method of preparation, e. g. negative stain or embedment, and whether the sample should be precleared by centrifugation, concentrated, or inoculated into tissue culture. Also, knowing the type of specimen and patient symptoms will lend suggestions of possible agents and eliminate some viruses, e. g. Rotavirus will not be seen in brain, nor Rabies in stool, but preconceived notions should not prejudice the observer into missing an unlikely pathogen.


Sign in / Sign up

Export Citation Format

Share Document