From bimodal one-dimensional maps to Hénon-like two-dimensional maps: does quantitative universality survive?

1994 ◽  
Vol 184 (6) ◽  
pp. 413-421 ◽  
Author(s):  
A.P. Kuznetsov ◽  
S.P. Kuznetsov ◽  
I.R. Sataev
1999 ◽  
Vol 19 (5) ◽  
pp. 1365-1378 ◽  
Author(s):  
MICHIKO YURI

We establish a generalized thermodynamic formalism for certain nonhyperbolic maps with countably many preimages. We study existence and uniqueness of conformal measures and statistical properties of the equilibrium states absolutely continuous with respect to the conformal measures. We will see that such measures are not Gibbs but satisfy a version of Gibbs property (weak Gibbs measure). We apply our results to a one-parameter family of one-dimensional maps and a two-dimensional nonconformal map related to number theory. Both of them admit indifferent periodic points.


Author(s):  
Ricardo Francisco Martinez-Gonzalez ◽  
Ruben Vazquez-Medina ◽  
Jose Alejandro Diaz-Mendez ◽  
Juan Lopez-Hernandez

This work presents the implementation of various chaotic maps; among the maps there are one-dimensional and two-dimensional ones. In order to implement the maps, their mathematical descriptions are modified to be represented with more accuracy by different binary representations. The sequences from the same map are compared to determine until which iteration, different descriptions produce similar outputs. The similarity coefficient is established in five percent. Comparison delivers some interesting findings; first, the one-dimensional maps, in this work, have comparative number of similar iterations. Second, the bi-dimensional maps present the lowest and highest number of similar iterations. Based on the modified mathematical descriptions, the VHDL implementations are developed. They are simulated and their results are compared against the modified mathematical description ones; resulting that both groups of results are congruent.


1992 ◽  
Vol 02 (03) ◽  
pp. 483-504 ◽  
Author(s):  
Yu. V. ANDREYEV ◽  
A. S. DMITRIEV ◽  
L. O. CHUA ◽  
C. W. WU

A method for storing and retrieving information on the stable cycles of one-dimensional maps as proposed in Dmitriev [1991], Dmitriev, Panas & Starkov [1991] is considered. The applicability of this method in storing and retrieving two-dimensional pictures is demonstrated. Possible extensions by compressing information are discussed. An implementation of random access memory using a one-dimensional map is also considered.


1966 ◽  
Vol 25 ◽  
pp. 46-48 ◽  
Author(s):  
M. Lecar

“Dynamical mixing”, i.e. relaxation of a stellar phase space distribution through interaction with the mean gravitational field, is numerically investigated for a one-dimensional self-gravitating stellar gas. Qualitative results are presented in the form of a motion picture of the flow of phase points (representing homogeneous slabs of stars) in two-dimensional phase space.


1982 ◽  
Vol 14 (1-2) ◽  
pp. 241-261 ◽  
Author(s):  
P A Krenkel ◽  
R H French

The state-of-the-art of surface water impoundment modeling is examined from the viewpoints of both hydrodynamics and water quality. In the area of hydrodynamics current one dimensional integral energy and two dimensional models are discussed. In the area of water quality, the formulations used for various parameters are presented with a range of values for the associated rate coefficients.


2010 ◽  
Vol 7 ◽  
pp. 90-97
Author(s):  
M.N. Galimzianov ◽  
I.A. Chiglintsev ◽  
U.O. Agisheva ◽  
V.A. Buzina

Formation of gas hydrates under shock wave impact on bubble media (two-dimensional case) The dynamics of plane one-dimensional shock waves applied to the available experimental data for the water–freon media is studied on the base of the theoretical model of the bubble liquid improved with taking into account possible hydrate formation. The scheme of accounting of the bubble crushing in a shock wave that is one of the main factors in the hydrate formation intensification with increasing shock wave amplitude is proposed.


2016 ◽  
Vol 11 (1) ◽  
pp. 119-126 ◽  
Author(s):  
A.A. Aganin ◽  
N.A. Khismatullina

Numerical investigation of efficiency of UNO- and TVD-modifications of the Godunov method of the second order accuracy for computation of linear waves in an elastic body in comparison with the classical Godunov method is carried out. To this end, one-dimensional cylindrical Riemann problems are considered. It is shown that the both modifications are considerably more accurate in describing radially converging as well as diverging longitudinal and shear waves and contact discontinuities both in one- and two-dimensional problem statements. At that the UNO-modification is more preferable than the TVD-modification because exact implementation of the TVD property in the TVD-modification is reached at the expense of “cutting” solution extrema.


2012 ◽  
Vol 9 (1) ◽  
pp. 47-52
Author(s):  
R.Kh. Bolotnova ◽  
V.A. Buzina

The two-dimensional and two-phase model of the gas-liquid mixture is constructed. The validity of numerical model realization is justified by using a comparative analysis of test problems solution with one-dimensional calculations. The regularities of gas-saturated liquid outflow from axisymmetric vessels for different geometries are established.


Sign in / Sign up

Export Citation Format

Share Document