Effect of saline water on soil salinity and on water stress, growth, and yield of wheat and potatoes

1993 ◽  
Vol 23 (3) ◽  
pp. 247-265 ◽  
Author(s):  
J.W. van Hoorn ◽  
N. Katerji ◽  
A. Hamdy ◽  
M. Mastrorilli
2019 ◽  
Vol 21 (1) ◽  
Author(s):  
Nuning Argo Subekti ◽  
Hasil Sembiring ◽  
Erythrina ◽  
Dedi Nugraha ◽  
Bhakti Priatmojo ◽  
...  

Abstract. Subekti NA, Sembiring H, Erythrina, Nugraha D, Priatmojo B, Nafisah. 2020. Yield of different rice cultivars at two levels of soil salinity under seawater intrusion in West Java, Indonesia. Biodiversitas 21: 14-20. A tendency to use saline water in rice production is rising in recent years, but the adaptation of variety under saline conditions is still questionable. The aim of the study was to evaluate the response of several rice cultivars on the growth and yield of rice under seawater intrusion in West Java. Two salt-tolerant cultivars (Inpari 34 and Inpari 35), two promising lines (PL-1 and PL-2) and two modern cultivars (Inpari 30 (Ciherang sub1) and Sidenuk) were evaluated in two soil salinity levels. In each farmer's field a Randomized Complete Block Design was applied with three replications per treatment. Results showed that Sidenuk and Inpari 30 produced same yield compared to tolerant varieties and promising lines during dry season under moderate soil salinity. There were not much different among the cultivars tested in terms of plant height and tiller number as well as the biomass and harvest index. However, under high soil salinity seed germination, plant height, number of tillers per plant, above-ground biomass, spikelet number, percent of sterile florets and productivity were significantly affected. Saline tolerant varieties Inpari 34 and Inpari 35 showed their superiority compared to non-tolerant varieties. Both varieties produced 40% higher yield than Inpari 30 (Ciherang sub 1) and Sidenuk.


2021 ◽  
Author(s):  
Francisco Pedrero Salcedo ◽  
Juan José Alarcón Cabañero ◽  
Pedro Pérez Cutillas

<p>A pioneering study in Murcia within the framework of the ASSIST (Use of Advanced information technologies for Site-Specific management of Irrigation and SaliniTy with degraded water) research project, seeks to lay the foundations for a new integrated system for the assessment of salinity through combined use of traditional techniques (soil and plant sampling) and new technologies (multispectral aerial videography or satellite observation; and image analysis) to help quantify and map soil salinization / degradation and the effects of soil-plant interactions (salinity-toxicity) on the growth and yield of irrigated crops. In this sense, the initial objective was to evaluate the salinity of the soil and the development of lettuces irrigated with unconventional water resources through thermal and multispectral images. Different soil and plant salinity indices were studied, observing that the temperature (on plant) and salinity index (SI) (on soil), had a moderate correlation with the soil salinity. Although the results obtained have been encouraging, more research is needed to develop specific equations capable to predic soil salinity from the values of these indices taken remotely. In this context, a review of the spectral salinity indices has been prepared to be applied at a regional scale. As an experimental area, El Campo de Cartagena located in the southeast of the Iberian Peninsula has been chosen, since there is intensive irrigated agriculture in a semi-arid environment. Due to this, farmers resort to using non-conventional and saline water sources, consequently the use of saline irrigation water is causing salinization of the soils and damage to the crops. Values from existing salinity records combined with soil salinity data obtained in various plots, provided information that was correlated with time series of Landsat images (1984-2020). Regression models were also applied in which environmental variables provided an improvement in the estimation of soil salinity. The results allowed us to determine the main salinity concentration areas, as well as inputs to establish criteria for improvement in the management of irrigation systems.</p>


1992 ◽  
Vol 21 (1-2) ◽  
pp. 107-117 ◽  
Author(s):  
N. Katerji ◽  
J.W. van Hoorn ◽  
A. Hamdy ◽  
N. Bouzid ◽  
S.El-Sayed Mahrous ◽  
...  

1996 ◽  
Vol 30 (3) ◽  
pp. 237-249 ◽  
Author(s):  
N. Katerji ◽  
J.W. van Hoorn ◽  
A. Hamdy ◽  
F. Karam ◽  
M. Mastrorilli

2020 ◽  
pp. 1-12
Author(s):  
E. K. Al-Fahdawe ◽  
A. A. Al-Sumaidaie ◽  
Y. K. Al-Hadithy

A pots experiment was conducted at the Department of Biology/College of Education for Girls/University of Anbar during Autumn season of 2018-2019 to study the effect of the salinity irrigation water and spray by humic acid in some of morphological, physiological, growth and yield traits of wheat cv. IPa. The experiment was randomized complete block design (RCBD) with three replications. The first factor was assigned for irrigation by saline water at four level (S0, S1, S2 and S3), while the second factor was the foliar spraying of humic acid in three level (0.0, 1.0 and 1.5 g l-1). The results showed that there was significant reduction in plant height, vegetative dry weight, biological yield and chlorophyll leaves content when the plants were irrigated by saline water approached to 41.09 cm, 0.747 g, 0.849 g plant-1 and 38.67 SPAD, respectively at salinity level of 8.3 ds m-1 compared with the plants which irrigated by fresh water. The total carbohydrates were significantly decreased at the treatment of 8.3 ds m-1 reached 18.71 mg g-1. Spray levels humic acid achieved a significant increase in plant height, dry weight of the vegetative part, biological yield and chlorophyll leaves content sprayed at 1.0 and 1.5 g l-1 compared to no sprayed. Nitrogen concentration was significantly increased, while both phosphorus and potassium were decreased in the vegetative parts of wheat as the salinity of irrigation water increased. However, the increase of humic acid levels led to significant increasing in nitrogen, phosphorus and potassium concentration.


Plants ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 480 ◽  
Author(s):  
Bushra Niamat ◽  
Muhammad Naveed ◽  
Zulfiqar Ahmad ◽  
Muhammad Yaseen ◽  
Allah Ditta ◽  
...  

Soil salinity and sodicity are among the main problems for optimum crop production in areas where rainfall is not enough for leaching of salts out of the rooting zone. Application of organic and Ca-based amendments have the potential to increase crop yield and productivity under saline–alkaline soil environments. Based on this hypothesis, the present study was conducted to evaluate the potential of compost, Ca-based fertilizer industry waste (Ca-FW), and Ca-fortified compost (Ca-FC) to increase growth and yield of maize under saline–sodic soil conditions. Saline–sodic soil conditions with electrical conductivity (EC) levels (1.6, 5, and 10 dS m−1) and sodium adsorption ratio (SAR) = 15, were developed by spiking soil with a solution containing NaCl, Na2SO4, MgSO4, and CaCl2. Results showed that soil salinity and sodicity significantly reduced plant growth, yield, physiological, and nutrient uptake parameters. However, the application of Ca-FC caused a remarkable increase in the studied parameters of maize at EC levels of 1.6, 5, and 10 dS m−1 as compared to the control. In addition, Ca-FC caused the maximum decrease in Na+/K+ ratio in shoot up to 85.1%, 71.79%, and 70.37% at EC levels of 1.6, 5, and 10 dS m−1, respectively as compared to the control treatment. Moreover, nutrient uptake (NPK) was also significantly increased with the application of Ca-FC under normal as well as saline–sodic soil conditions. It is thus inferred that the application of Ca-FC could be an effective amendment to enhance growth, yield, physiology, and nutrient uptake in maize under saline–sodic soil conditions constituting the novelty of this work.


Author(s):  
José T. A. Souza ◽  
Járisson C. Nunes ◽  
Lourival F. Cavalcante ◽  
Juliete A. da S. Nunes ◽  
Walter E. Pereira ◽  
...  

ABSTRACT An experiment was undertaken in Remígio County, Paraíba State, Brazil, from July 2013 to May 2014, in order to evaluate the effects of saline water irrigation, bovine biofertilizer, and potassium type on soil salinity, leaf macronutrient composition, and production of yellow passion fruit cv. BRS Gigante Amarelo. Treatments were distributed in randomized blocks, arranged in a 2 × 2 × 2 factorial design, with reference to electrical conductivity of the water (0.35 and 4.00 dS m-1), soil with and without bovine biofertilizer, and application of potassium chloride as a conventional treatment (KCl) and in an organic polymer-coated form, supplied monthly. Bovine biofertilizer was diluted in non-saline water (proportion, 50%) and applied via water at a volume of 6 L plant-1 one day before transplanting, and then every 90 days. The combination of saline water with bovine biofertilizer raised soil salinity to a similar proportion when comparing saline water and conventional potassium chloride with saline water and polymer-coated potassium chloride. The increase in water saline concentrations associated with both types of potassium chloride and with bovine biofertilizer elevated soil salinity from non-saline to saline. On starting to flower, plants of cv. BRS Gigante Amarelo were deficient in macronutrients other than nitrogen and potassium, but nonetheless produced fruits of an adequate mass for the consumer market.


2022 ◽  
Vol 12 ◽  
Author(s):  
Ruibo Sun ◽  
Xiaogai Wang ◽  
Yinping Tian ◽  
Kai Guo ◽  
Xiaohui Feng ◽  
...  

Globally soil salinity is one of the most devastating environmental stresses affecting agricultural systems and causes huge economic losses each year. High soil salinity causes osmotic stress, nutritional imbalance and ion toxicity to plants and severely affects crop productivity in farming systems. Freezing saline water irrigation and plastic mulching techniques were successfully developed in our previous study to desalinize costal saline soil. Understanding how microbial communities respond during saline soil amelioration is crucial, given the key roles soil microbes play in ecosystem succession. In the present study, the community composition, diversity, assembly and potential ecological functions of archaea, bacteria and fungi in coastal saline soil under amelioration practices of freezing saline water irrigation, plastic mulching and the combination of freezing saline water irrigation and plastic mulching were assessed through high-throughput sequencing. These amelioration practices decreased archaeal and increased bacterial richness while leaving fungal richness little changed in the surface soil. Functional prediction revealed that the amelioration practices, especially winter irrigation with saline water and film mulched in spring, promoted a community harboring heterotrophic features. β-null deviation analysis illustrated that amelioration practices weakened the deterministic processes in structuring coastal saline soil microbial communities. These results advanced our understanding of the responses of the soil microbiome to amelioration practices and provided useful information for developing microbe-based remediation approaches in coastal saline soils.


Sign in / Sign up

Export Citation Format

Share Document