Performance of wheat and triticale cultivars in a variable soil—water environment II. Evapotranspiration, water use efficiency, harvest index and grain yield

1986 ◽  
Vol 13 ◽  
pp. 301-315 ◽  
Author(s):  
P.K. Aggarwal ◽  
A.K. Singh ◽  
G.S. Chaturvedi ◽  
S.K. Sinha
1986 ◽  
Vol 13 (4) ◽  
pp. 523 ◽  
Author(s):  
JM Morgan ◽  
AG Condon

Genotypic differences in turgor maintenance in wheat were shown to be associated with differences in grain yield in the field at both high and Low water deficits. High water deficits were produced by growing plants in field plots using water stored in the soil at sowing, and excluding rain with a rain cover. At low water deficits plants received rainfall, and irrigation was supplied before and immediately after sowing, at tillering, at jointing, at ear emergence, and during grain filling. Yield differences were analysed in terms of harvest index, water use, and water use efficiency. Water use was calculated from changes in soil water contents. At high water deficits all three factors were associated with differences in turgor maintenance. However, only the variations in water use and harvest index could be logically associated with differences in turgor maintenance. Analysis of the soil water extraction data showed that the differences in water use efficiency were due solely to differences in water use at depth while surface water losses were the same, i.e. the ratio of transpiration to soil evaporation would have been higher in low-osmoregulating genotypes. At low water deficits, no differences were observed in harvest index, though there were non-significant correlations between turgor maintenance and total water use efficiency or total water use. A similar result was obtained when the water use and yield data were related to osmoregulation measurements made in the glasshouse. It is therefore concluded that effects of turgor maintenance or osmoregulation on grain yield were primarily associated with differences in water use which were, in turn, due to differences in water extraction at soil depths between 25 and 150 cm.


2008 ◽  
Vol 27 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Xiying Zhang ◽  
Suying Chen ◽  
Hongyong Sun ◽  
Dong Pei ◽  
Yanmei Wang

Agronomy ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 5
Author(s):  
Misheck Musokwa ◽  
Paramu Mafongoya

Frequent droughts have threatened the crop yields and livelihoods of many smallholder farmers in South Africa. Pigeonpea can be grown by farmers to mitigate the impacts of droughts caused by climate change. An experiment was conducted at Fountainhill Farm from January 2016 to December 2017. The trial examined grain yield in addition to water use efficiency (WUE) of pigeonpea intercropped with maize versus sole pigeonpea and maize. A randomized complete block design, replicated three times, was used. Soil water tension was measured at 20, 50, and 120 cm within plots. The highest and lowest soil water tension was recorded at 20 m and 120 m respectively. Combined biomass and grain yield were significantly different: pigeonpea + maize (5513 kg ha−1) > pigeonpea (3368 kg ha−1) > maize (2425 kg ha−1). A similar trend was observed for WUE and land equivalent ratio (LER), where pigeonpea + maize outperformed all sole cropping systems. The inclusion of pigeonpea in a traditional mono-cropping system is recommended for smallholder farmers due to greater WUE, LER and other associated benefits such as food, feed and soil fertility amelioration, and it can reduce the effects of droughts induced by climate change.


2004 ◽  
Vol 84 (2) ◽  
pp. 487-501 ◽  
Author(s):  
C. A. Campbell ◽  
R. P. Zentner ◽  
F. Selles ◽  
V. O. Biederbeck ◽  
B. G. McConkey ◽  
...  

Producers in the semiarid Canadian prairies practice frequent summerfallow to conserve water and reduce the risk of crop failure, but this practice promotes soil degradation. In contrast, annual cropping enhances soil quality but results in greater economic risk. We need to know what is the most suitable cropping frequency for this region. In 1985, based on results of the first 18 yr of a long-term crop rotation experiment being conducted on a medium-textured, Orthic Brown Chernozem at Swift Current, Saskatchewan, we modified the experiment to allow comparison of four cropping frequencies over the period 1985–2002. These were fallow-spring wheat (Triticum aestivum L.) (F-W), F-W-W, F-W-W-W-W-W, and continuous wheat (Cont W). All systems received recommended rates of N and P fertilizer. Growing season precipitation during the 1985–2002 period was 10% above average so that grain yields were also above average for this region. We assessed yields of grain, straw and N in aboveground plant parts, N concentration in grain and straw, harvest index, nitrogen harvest index and water use efficiency, and the average annual production (on a rotation basis) of grain, straw and aboveground N yield, and related these characteristics to water deficit. Water deficit was the main factor responsible for annual variations in the characteristics assessed. Of these characteristics, cropping frequency influenced only the average annual productivity factors; it rarely influenced the characteristics when they were assessed on a rotation-phase basis. Assuming cropping frequency (x) for the 2-yr, 3-yr, 6-yr and Cont W rotations is 50%, 67%, 83%, and 100%, respectively, then average annual yields (y) in kg ha-1 yr-1 were related to frequency as follows: (1) for grain yield y = 768 + 10.7 x, r2 = 0.99; (2) for straw yield y = 1159 + 18.9 x, r2 = 0.99; and (3) for aboveground plant N yield y = 23.7 + 0.36 x, r2 = 0.99. The regression between annual grain production and cropping frequency at Swift Current for 1985 to 2002 had a much higher slope than the relationship for the same experiment in the much drier 1967 to 1984 period. Further, the equations for Swift Current in 1985–2002 were similar to the relationships obtained for systems in the subhumid Black Chernozems, indicating such relationships are greatly influenced by weather conditions. These relationships may be useful for conducting economic analyses and for modeling N balance. We conducted an apparent N balance analysis which indicated that all four rotations have lost N from the system in inverse proportion to the frequency of cropping. However, changes in total N in the 0- to 0.3-m depth of soil suggest that they have not lost N and that Cont W gained N over the course of the study. We are not able to explain this apparent anomaly and recommend further research on this question. Key words: Fallow frequency, grain yield, N concentration, N yield, water deficit, water use efficiency, N balance


1989 ◽  
Vol 69 (2) ◽  
pp. 367-375 ◽  
Author(s):  
M. H. ENTZ ◽  
D. B. FOWLER

The influence of crop water environment on the productivity of no-till winter wheat (Triticum aestivum L. ’Norstar’) was observed for 17 site-years of trials in Saskatchewan between 1984 and 1986. Growing season precipitation (P) averaged 212 mm (approximately 120% of average) and pan evaporation (E) averaged 749 mm for these trials. Precipitation was approximately evenly distributed across the growing season while E increased from a low of 6.5 mm d−1 in early May to a high of 8.3 mm d−1 immediately after anthesis. Consequently, water stress was highest after anthesis. Total evapotranspiration (ET) (soil water use to 130 cm plus growing season P) ranged from 171 to 364 mm and approximately 20% of the ET was derived from soil water reserves. The average ratio of ET before and after anthesis was 1:7:1 and in many instances water utilized after anthesis was almost exclusively derived from intermittent rainfall events. Several yield-water models were fit to the data in order to establish a relationship between the crop water environment and grain yield. Yields ranged from 1316 to 5003 kg ha−1 and were most closely associated with the water environment (soil water, E and P) during the time from stem elongation to anthesis (r2 = 0.71). Water use efficiency, expressed as kg ha−1 grain yield divided by ET, ranged from 6.3 to 18.8 kg ha−1 mm−1 and was positively correlated with spikes m−2 (r = 0.59*), kernel weight (r = 0.73**), dry matter at anthesis (r = 0.84**), and negatively correlated with E during the 30 days prior to anthesis (r = 0.75**). Both dry matter at anthesis and dry matter at maturity were linearly correlated with grain yield (r = 0.85** and 0.92**, respectively). Both observations suggested that high grain yields required high dry matter yields.Key words: Wheat (winter), precipitation, evaporation, soil water, water use efficiency, models


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8892
Author(s):  
Shahbaz Khan ◽  
Sumera Anwar ◽  
Yu Shaobo ◽  
Zhiqiang Gao ◽  
Min Sun ◽  
...  

Sustainability of winter wheat yield under dryland conditions depends on improving soil water stored during fallow and its efficient use. A 3-year field experiment was conducted in Loess Plateau to access the effect of tillage and N (nitrogen) rates on soil water, N distribution and water- and nitrogen-use efficiency of winter wheat. Deep tillage (DT, 25–30 cm depth) and no-tillage (NT) were operated during fallow season, whereas four N rates (0, 90, 150 and 210 kg ha−1) were applied before sowing. Rates of N and variable rainfall during summer fallow period led to the difference of soil water storage. Soil water storage at anthesis and maturity was decreased with increasing N rate especially in the year with high precipitation (2014–2015). DT has increased the soil water storage at sowing, N content, numbers of spike, grain number, 1,000 grain weight, grain yield, and water and N use efficiency as compared to NT. Grain yield was significantly and positively related to soil water consumption at sowing to anthesis and anthesis to maturity, total plant N, and water-use efficiency. Our study implies that optimum N rate and deep tillage during the fallow season could improve dryland wheat production by balancing the water consumption and biomass production.


2017 ◽  
Vol 43 (6) ◽  
pp. 899 ◽  
Author(s):  
Ming HUANG ◽  
Zhao-Hui WANG ◽  
Lai-Chao LUO ◽  
Sen WANG ◽  
Ming BAO ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document