INFLUENCE OF CROP WATER ENVIRONMENT AND DRY MATTER ACCUMULATION ON GRAIN YIELD OF NO-TILL WINTER WHEAT

1989 ◽  
Vol 69 (2) ◽  
pp. 367-375 ◽  
Author(s):  
M. H. ENTZ ◽  
D. B. FOWLER

The influence of crop water environment on the productivity of no-till winter wheat (Triticum aestivum L. ’Norstar’) was observed for 17 site-years of trials in Saskatchewan between 1984 and 1986. Growing season precipitation (P) averaged 212 mm (approximately 120% of average) and pan evaporation (E) averaged 749 mm for these trials. Precipitation was approximately evenly distributed across the growing season while E increased from a low of 6.5 mm d−1 in early May to a high of 8.3 mm d−1 immediately after anthesis. Consequently, water stress was highest after anthesis. Total evapotranspiration (ET) (soil water use to 130 cm plus growing season P) ranged from 171 to 364 mm and approximately 20% of the ET was derived from soil water reserves. The average ratio of ET before and after anthesis was 1:7:1 and in many instances water utilized after anthesis was almost exclusively derived from intermittent rainfall events. Several yield-water models were fit to the data in order to establish a relationship between the crop water environment and grain yield. Yields ranged from 1316 to 5003 kg ha−1 and were most closely associated with the water environment (soil water, E and P) during the time from stem elongation to anthesis (r2 = 0.71). Water use efficiency, expressed as kg ha−1 grain yield divided by ET, ranged from 6.3 to 18.8 kg ha−1 mm−1 and was positively correlated with spikes m−2 (r = 0.59*), kernel weight (r = 0.73**), dry matter at anthesis (r = 0.84**), and negatively correlated with E during the 30 days prior to anthesis (r = 0.75**). Both dry matter at anthesis and dry matter at maturity were linearly correlated with grain yield (r = 0.85** and 0.92**, respectively). Both observations suggested that high grain yields required high dry matter yields.Key words: Wheat (winter), precipitation, evaporation, soil water, water use efficiency, models

2000 ◽  
Vol 80 (4) ◽  
pp. 729-738 ◽  
Author(s):  
D. R. Domitruk ◽  
B. L. Duggan ◽  
D. B. Fowler

Higher water use efficiency provides no-till-seeded winter wheat with an advantage over spring-sown crops in western Canada. However, like all crops, winter wheat (Triticum aestivum L) is subject to large yield losses due to drought. This study was undertaken to identify the effect of weather and crop soil water status on water use, aboveground biomass production and grain yield of no-till winter wheat grown on the Canadian prairies. Five winter wheat cultivars were grown over a 3-yr period at a total of 17 sites scattered across the different climatic zones of Saskatchewan. Both the establishment and expression of grain yield potential were limited by drought in these dryland environments. Early-season moisture was required to set up a high grain yield potential while low ET and high precipitation during grain filling were necessary to secure yield. Rapid growth under cool temperatures during April and early May consumed much of the available water in the top 50-cm of the soil profile and large ET deficits, as a consequence of a continuous decline in available water, characterized drought stress in most trials. While stored soil water at greenup was not sufficient to support a crop, there was growing season rainfall at all trial sites and improvements in water availability led to higher grain yields and an increased range in mean environmental grain yield. Rainfall had its greatest influence on grain yield during tillering, while atmospheric conditions and soil water content were more important from heading to anthesis. Because environmental differences in drought stress were related to the volume and distribution of growing season precipitation, some dryland environments were exposed to intermittent stress while stress was terminal in others. Therefore, to be successful, winter wheat cultivars and management systems for the Canadian prairies must be able to accommodate variable patterns of growing season water availability. Key words: Triticum aestivum L., evapotranspiration, precipitation, water use, biomass, grain yield


1992 ◽  
Vol 72 (4) ◽  
pp. 1075-1089 ◽  
Author(s):  
A. M. Johnston ◽  
D. B. Fowler

The yield of recrop winter wheat (Triticum aestivum L.) is a function of the interaction between agronomic management and the prevailing environment. Eight field trials were conducted over 2 yr on Dark Brown and Black Chernozemic soils in Saskatchewan to determine the influence of fertilizer-N rate and time of application on the early-season crop development and water use of no-till seeded winter wheat. Ammonium nitrate was surface broadcast on one of three schedules: as early as possible (early); 67% early and 33% at the beginning of stem elongation (split): or 3 wk after early (late), at rates of 0, 67, 134 and 202 kg N ha−1. In 1987, N fertilization resulted in the development and maintenance of a larger leaf-area index (LAI) and increased leaf conductance, leading to higher dry matter (DM) yield at anthesis and harvest. High air temperatures increased evaporative demand in 1988 and hastened crop development. Early-season response of both LAI and tiller number to fertilizer-N were abruptly terminated, followed by rapid pre-anthesis senescence in 1988. On average, 43% of harvest DM had accumulated by anthesis in 1987, compared with 78% in 1988. Although early N application increased and maintained LAI over late N in three of the eight trials, tiller responses to early N application were lost before anthesis under the environmental stress encountered. Increases in water-use efficiency of DM production with added N were a reflection of DM responses and not water use. Most of the soil water was extracted pre-anthesis, with on average 98% of post-anthesis evapotranspiration (ET) coming from rainfall. Maximum ET was associated with periods of high rainfall. Pre-anthesis DM yield increases associated with fertilizer-N, and dependence of post-anthesis ET on rainfall, resulted in increased plant stress and reduced leaf conductance during grain filling with fertilizer-N additions. Early correction of N deficiencies were required to efficiently utilize rainfall and stored soil water for biomass production under the recrop conditions used to produce no-till winter wheat in Saskatchewan’s semi-arid environment.Key words: Winter wheat, N application time, drought, water-use efficiency


2008 ◽  
Vol 27 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Xiying Zhang ◽  
Suying Chen ◽  
Hongyong Sun ◽  
Dong Pei ◽  
Yanmei Wang

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8892
Author(s):  
Shahbaz Khan ◽  
Sumera Anwar ◽  
Yu Shaobo ◽  
Zhiqiang Gao ◽  
Min Sun ◽  
...  

Sustainability of winter wheat yield under dryland conditions depends on improving soil water stored during fallow and its efficient use. A 3-year field experiment was conducted in Loess Plateau to access the effect of tillage and N (nitrogen) rates on soil water, N distribution and water- and nitrogen-use efficiency of winter wheat. Deep tillage (DT, 25–30 cm depth) and no-tillage (NT) were operated during fallow season, whereas four N rates (0, 90, 150 and 210 kg ha−1) were applied before sowing. Rates of N and variable rainfall during summer fallow period led to the difference of soil water storage. Soil water storage at anthesis and maturity was decreased with increasing N rate especially in the year with high precipitation (2014–2015). DT has increased the soil water storage at sowing, N content, numbers of spike, grain number, 1,000 grain weight, grain yield, and water and N use efficiency as compared to NT. Grain yield was significantly and positively related to soil water consumption at sowing to anthesis and anthesis to maturity, total plant N, and water-use efficiency. Our study implies that optimum N rate and deep tillage during the fallow season could improve dryland wheat production by balancing the water consumption and biomass production.


2018 ◽  
Vol 10 (11) ◽  
pp. 1682 ◽  
Author(s):  
Kelly Thorp ◽  
Alison Thompson ◽  
Sara Harders ◽  
Andrew French ◽  
Richard Ward

Improvement of crop water use efficiency (CWUE), defined as crop yield per volume of water used, is an important goal for both crop management and breeding. While many technologies have been developed for measuring crop water use in crop management studies, rarely have these techniques been applied at the scale of breeding plots. The objective was to develop a high-throughput methodology for quantifying water use in a cotton breeding trial at Maricopa, AZ, USA in 2016 and 2017, using evapotranspiration (ET) measurements from a co-located irrigation management trial to evaluate the approach. Approximately weekly overflights with an unmanned aerial system provided multispectral imagery from which plot-level fractional vegetation cover ( f c ) was computed. The f c data were used to drive a daily ET-based soil water balance model for seasonal crop water use quantification. A mixed model statistical analysis demonstrated that differences in ET and CWUE could be discriminated among eight cotton varieties ( p < 0 . 05 ), which were sown at two planting dates and managed with four irrigation levels. The results permitted breeders to identify cotton varieties with more favorable water use characteristics and higher CWUE, indicating that the methodology could become a useful tool for breeding selection.


Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1315
Author(s):  
Xun Bo Zhou ◽  
Guo Yun Wang ◽  
Li Yang ◽  
Hai Yan Wu

Low water availability coupled with poor planting method has posed a great challenge to winter wheat (Triticum aestivum L.) productivity. To improve productivity and water use efficiency (WUE) under deficit irrigation, an effective water-saving technology that is characterized by three planting modes has been developed (uniform with 30-cm row spacing (U), double-double row spacing of 5 cm (DD), and furrow-ridge row spacing of alternated 20 cm and 40 cm (F)) combined with three irrigation regimes (50 mm water each at growth stage 34 (GS34) and GS48 (W1), and 100 mm water at GS48 (W2), or 100 mm each water at GS34 and GS48 (W3)). Results showed that DD increased yield by 9.7% and WUE by 12.6% due to higher soil water status and less soil water depletion and evapotranspiration compared with U. Although the soil water status, soil water depletion, evapotranspiration, and yield increased with increasing irrigation amount, more soil water depletion and evapotranspiration resulted in low WUE. The deficit irrigation was beneficial for improving WUE as W1 had significantly increased yield by 5.4% and WUE by 7.1% compared with W2. Yield and evapotranspiration showed a quadratic dynamic equation indicating that yield increased with increasing evapotranspiration. Considering WUE and relatively higher yield under deficit water, W1 combined with DD is suggested to be a good management strategy to be applied in winter wheat of water-scarce regions.


Sign in / Sign up

Export Citation Format

Share Document