Digital image processing of interferograms for local convective heat-transfer measurements

1993 ◽  
Vol 7 (2) ◽  
pp. 169
Author(s):  
D. Naylor ◽  
J.D. Tarasuk
Author(s):  
V. Sajith ◽  
Divya Haridas ◽  
C. B. Sobhan ◽  
G. R. C. Reddy

Convective heat transfer in micro and mini channels has been recommended as an effective heat removal method for various electronic packages and systems. Experimental and theoretical investigations on the thermal performance of micro and mini channels have gained immense attention and hence, heat transfer studies in mini channels are of great importance. Some of the experimental results found in the literature on heat transfer in small-dimension channels are of contradicting nature even though some generally agreeing results are also found. One of the probable reasons for such deviations is the intrusive nature of the measurement techniques used. The traditional method of temperature measurement in channels uses the thermocouple probe, and for obtaining temperature distribution across the channel either a number of probes or a moving probe technique is required, both of which disturb the flow field and cause measurement errors. Hence a non intrusive measurement technique, such as an optical method is preferable for temperature measurement in small channels. In the present work, convective heat transfer studies have been performed on water flowing through a mini channel of hydraulic diameter 4 mm, using the non-intrusive technique of laser interferometry, coupled with digital image processing. The channel is fabricated using high quality optical glass and aluminum blocks. Mach Zehnder Interferometry is used for obtaining the temperature distribution in the channel. The experimental arrangement consists of two identical channels, one placed in the test section and the other in the reference section of the interferometric set up. As the test section is heated, a density variation is produced in the medium, which causes a refractive index variation, deforming interference fringes. This enables the calculation of the temperature distribution inside the channel. The interferograms are grabbed using a CCD camera and an AVT Fire package software. Digital image processing technique, using MATLAB software is used for locating the fringe-centers, and calculating the temperature distribution. The temperature profiles are obtained at different sections of the channel for various values of the average Reynolds number and various heating levels. The local and average heat flux values are obtained from the constructed temperature distributions. Variations of the local and average heat transfer coefficients and Nusselt number are determined and discussed. Results of parametric studies are compared and contrasted with relevant entry length solutions from the literature.


1992 ◽  
Vol 114 (4) ◽  
pp. 765-775 ◽  
Author(s):  
C. Camci ◽  
K. Kim ◽  
S. A. Hippensteele

This study focuses on a new image processing based color capturing technique for the quantitative interpretation of liquid crystal images used in convective heat transfer studies. The present method is highly applicable to the surfaces exposed to convective heating in gas turbine engines. The study shows that, in single-crystal mode, many of the colors appearing on the heat transfer surface correlate strongly with the local temperature. A very accurate quantitative approach using an experimentally determined linear hue versus temperature relation is possible. The new hue-capturing process is discussed in detail, in terms of the strength of the light source illuminating the heat transfer surface, effect of the orientation of the illuminating source with respect to the surface, crystal layer uniformity, and the repeatability of the process. The method uses a 24-bit color image processing system operating in hue-saturation-intensity domain, which is an alternative to conventional systems using red-green-blue color definition. The present method is more advantageous than the multiple filter method because of its ability to generate many isotherms simultaneously from a single-crystal image at a high resolution, in a very time-efficient manner. The current approach is valuable in terms of its direct application to both steady-state and transient heat transfer techniques currently used for the hot section heat transfer research in air-breathing propulsion systems.


Author(s):  
Cengiz Camci ◽  
Kuisoon Kim ◽  
S. A. Hippensteele

This study focuses on a new image processing based color capturing technique for the quantitative interpretation of liquid crystal images used in convective heat transfer studies. The present method is highly applicable to the surfaces exposed to convective heating in gas turbine engines. The study shows that, in single crystal mode, many of the colors appearing on the heat transfer surface strongly correlate with the local temperature. A very accurate quantitative approach using an experimentally determined linear hue versus temperature relation is possible. The new hue capturing process is discussed in detail, in terms of the strength of the light source illuminating the heat transfer surface, effect of the orientation of the illuminating source with respect to the surface, crystal layer uniformity and the repeatability of the process. The method uses a 24 bit color image processing system operating in hue-saturation-intensity domain which is an alternative to conventional systems using red-green-blue color definition. The present method is more advantageous than the multiple filter method because of its ability to generate many isotherms simultaneously from a single crystal image at a high resolution, in a very time efficient manner. The current approach is valuable in terms of its direct application to both steady state and transient heat transfer techniques currently used for the hot section heat transfer research in air breathing propulsion systems.


Author(s):  
R. C. Gonzalez

Interest in digital image processing techniques dates back to the early 1920's, when digitized pictures of world news events were first transmitted by submarine cable between New York and London. Applications of digital image processing concepts, however, did not become widespread until the middle 1960's, when third-generation digital computers began to offer the speed and storage capabilities required for practical implementation of image processing algorithms. Since then, this area has experienced vigorous growth, having been a subject of interdisciplinary research in fields ranging from engineering and computer science to biology, chemistry, and medicine.


Author(s):  
L. Montoto ◽  
M. Montoto ◽  
A. Bel-Lan

INTRODUCTION.- The physical properties of rock masses are greatly influenced by their internal discontinuities, like pores and fissures. So, these need to be measured as a basis for interpretation. To avoid the basic difficulties of measurement under optical microscopy and analogic image systems, the authors use S.E.M. and multiband digital image processing. In S.E.M., analog signal processing has been used to further image enhancement (1), but automatic information extraction can be achieved by simple digital processing of S.E.M. images (2). The use of multiband image would overcome difficulties such as artifacts introduced by the relative positions of sample and detector or the typicals encountered in optical microscopy.DIGITAL IMAGE PROCESSING.- The studied rock specimens were in the form of flat deformation-free surfaces observed under a Phillips SEM model 500. The SEM detector output signal was recorded in picture form in b&w negatives and digitized using a Perkin Elmer 1010 MP flat microdensitometer.


Author(s):  
J. Hefter

Semiconductor-metal composites, formed by the eutectic solidification of silicon and a metal silicide have been under investigation for some time for a number of electronic device applications. This composite system is comprised of a silicon matrix containing extended metal-silicide rod-shaped structures aligned in parallel throughout the material. The average diameter of such a rod in a typical system is about 1 μm. Thus, characterization of the rod morphology by electron microscope methods is necessitated.The types of morphometric information that may be obtained from such microscopic studies coupled with image processing are (i) the area fraction of rods in the matrix, (ii) the average rod diameter, (iii) an average circularity (roundness), and (iv) the number density (Nd;rods/cm2). To acquire electron images of these materials, a digital image processing system (Tracor Northern 5500/5600) attached to a JEOL JXA-840 analytical SEM has been used.


Author(s):  
K. N. Colonna ◽  
G. Oliphant

Harmonious use of Z-contrast imaging and digital image processing as an analytical imaging tool was developed and demonstrated in studying the elemental constitution of human and maturing rabbit spermatozoa. Due to its analog origin (Fig. 1), the Z-contrast image offers information unique to the science of biological imaging. Despite the information and distinct advantages it offers, the potential of Z-contrast imaging is extremely limited without the application of techniques of digital image processing. For the first time in biological imaging, this study demonstrates the tremendous potential involved in the complementary use of Z-contrast imaging and digital image processing.Imaging in the Z-contrast mode is powerful for three distinct reasons, the first of which involves tissue preparation. It affords biologists the opportunity to visualize biological tissue without the use of heavy metal fixatives and stains. For years biologists have used heavy metal components to compensate for the limited electron scattering properties of biological tissue.


Sign in / Sign up

Export Citation Format

Share Document