Modeling matrix grain growth in the presence of growing second phase particles in two phase alloys

1990 ◽  
Vol 38 (9) ◽  
pp. 1607-1617 ◽  
Author(s):  
G. Grewal ◽  
S. Ankem
2014 ◽  
Vol 598 ◽  
pp. 8-12
Author(s):  
K.R. Phaneesh ◽  
Anirudh Bhat ◽  
Gautam Mukherjee ◽  
Kishore T. Kashyap

Large scale Potts model Monte Carlo simulation was carried on 3-dimensional square lattices of 1003 and 2003 sizes using the Metropolis algorithm to study grain growth behavior. Simulations were carried out to investigate both growth kinetics as well as the Zener limit in two-phase polycrystals inhibited in growth by second phase particles of single-voxel size. Initially the matrices were run to 10,000 Monte Carlo steps (MCS) to check the growth kinetics in both single phase and two-phase poly-crystals. Grain growth exponent values obtained as a result have shown to be highest (~ 0.4) for mono-phase materials while the value decreases with addition of second phase particles. Subsequently the matrices were run to stagnation in the presence of second phase particles of volume fractions ranging from 0.001to 0.1. Results obtained have shown a cube root dependence of the limiting grain size over the particle volume fraction thus reinforcing earlier 3D simulation efforts. It was observed that there was not much difference in the values of either growth kinetics or the Zener limit between 1003 and 2003 sized matrices, although the results improved mildly with size.


2012 ◽  
Vol 715-716 ◽  
pp. 611-616 ◽  
Author(s):  
M. Candic ◽  
Bao Hui Tian ◽  
Christof Sommitsch

In the present work, for the description of grain coarsening, a probabilistic and a deterministic 2D cellular automaton simulation setup were developed. The results of the simulation have been validated by solution annealing experiments of austenitic stainless steel 304L (Fe-18Cr-8Ni) at different temperatures and times. Both cellular automata models show an excellent correlation between the experimental determined data and grain growth kinetics based upon considerations of temperature and second phase particles. Additionally, a two parameter approach of the probabilistic model was implemented, resulting in determining the grain sizes limiting normal and abnormal grains and accurate description of grain growth.


2016 ◽  
Vol 850 ◽  
pp. 307-313
Author(s):  
Yan Wu ◽  
Si Xia ◽  
Bernie Ya Ping Zong

A phase field model has been established to simulate the grain growth of AZ31 magnesium alloy containing spherical particles with different sizes and contents under realistic spatial-temporal scales. The expression term of second phase particles are added into the local free energy density equation, and the simulated results show that the pinning effect of particles on the grain growth is increased when the contents of particles is increasing, which is consistent with the law of Zener pinning. There is a critical particle size to affect the grain growth in the microstructure. If the size of particles is higher than the critical value, the pinning effect of particles for grain growth will be increased with further decreasing the particle size; however the effect goes opposite if the particle size is lower than the critical value.


2016 ◽  
Vol 35 (10) ◽  
pp. 1005-1011
Author(s):  
T. J. Pan ◽  
J. Chen ◽  
Y. X. He ◽  
W. Wei ◽  
J. Hu

AbstractThe oxidation behavior of grain-refined Cu–7.0 Cr alloy (GR Cu–7.0 Cr) in air at 973–1,073 K was investigated in comparison with normal casting Cu–7.0 Cr alloy (CA Cu–7.0 Cr). The oxidation of CA Cu–7.0 Cr alloy nearly followed parabolic law, while the oxidation kinetics of GR Cu–7.0 Cr slightly deviated from parabolic law. Both alloys almost produced multi-layered scales consisting of the outer layer of CuO and the inner layer of mixed Cr2O3 and Cu2O oxides plus internal oxidation zones of chromium. The grain-refined Cu–7.0 Cr alloy produced a more amount of Cr2O3 in the inner layer of the scale, and thus was oxidized at much lower oxidation rate than that of CA Cu–7.0 Cr with normal grain size. The experimental results indicated that the differences in oxidation behavior between two alloys may be ascribed to the different size and spatial distribution of the second-phase particles and the reactive component contents in localized zone.


Sign in / Sign up

Export Citation Format

Share Document