Characteristics and circulation of the surface and intermediate water masses off Algeria

1995 ◽  
Vol 42 (10) ◽  
pp. 1803-1830 ◽  
Author(s):  
Mejdoub Benzohra ◽  
Claude Millot
2021 ◽  
Author(s):  
Giusy Fedele ◽  
Elena Mauri ◽  
Giulio Notarstefano ◽  
Pierre Marie Poulain

Abstract. The Atlantic Water (AW) and Levantine Intermediate Water (LIW) are important water masses that play a crucial role in the internal variability of the Mediterranean thermohaline circulation. In particular, their variability and interaction, along with other water masses that characterize the Mediterranean basin, such as the Western Mediterranean Deep Water (WMDW), contribute to modify the Mediterranean Outflow through the Gibraltar Strait and hence may influence the stability of the global thermohaline circulation. This work aims to characterize the AW and LIW in the Mediterranean Sea, taking advantage of the large observational dataset provided by Argo floats from 2001 to 2019. Using different diagnostics, the AW and LIW were identified, highlighting the inter-basin variability and the strong zonal gradient that characterize the two water masses in this marginal sea. Their temporal variability was also investigated focusing on trends and spectral features which constitute an important starting point to understand the mechanisms that are behind their variability. A clear salinification and warming trend have characterized the AW and LIW in the last two decades (~0.007 and 0.008 yr−1; 0.018 and 0.007 °C yr−1, respectively). The salinity and temperature trends found at subbasin scale are in good agreement with previous results. The strongest trends are found in the Adriatic basin in both the AW and LIW properties. A subbasin dependent spectral variability emerges in the AW and LIW salinity timeseries with peaks between 2 and 10 years.


2014 ◽  
Vol 41 (4) ◽  
pp. 1232-1237 ◽  
Author(s):  
Ronald Thresher ◽  
John Morrongiello ◽  
Bernadette M. Sloyan ◽  
Kyne Krusic-Golub ◽  
Samuel Shephard ◽  
...  

2018 ◽  
Vol 15 (7) ◽  
pp. 2075-2090 ◽  
Author(s):  
Maribel I. García-Ibáñez ◽  
Fiz F. Pérez ◽  
Pascale Lherminier ◽  
Patricia Zunino ◽  
Herlé Mercier ◽  
...  

Abstract. We present the distribution of water masses along the GEOTRACES-GA01 section during the GEOVIDE cruise, which crossed the subpolar North Atlantic Ocean and the Labrador Sea in the summer of 2014. The water mass structure resulting from an extended optimum multiparameter (eOMP) analysis provides the framework for interpreting the observed distributions of trace elements and their isotopes. Central Waters and Subpolar Mode Waters (SPMW) dominated the upper part of the GEOTRACES-GA01 section. At intermediate depths, the dominant water mass was Labrador Sea Water, while the deep parts of the section were filled by Iceland–Scotland Overflow Water (ISOW) and North-East Atlantic Deep Water. We also evaluate the water mass volume transports across the 2014 OVIDE line (Portugal to Greenland section) by combining the water mass fractions resulting from the eOMP analysis with the absolute geostrophic velocity field estimated through a box inverse model. This allowed us to assess the relative contribution of each water mass to the transport across the section. Finally, we discuss the changes in the distribution and transport of water masses between the 2014 OVIDE line and the 2002–2010 mean state. At the upper and intermediate water levels, colder end-members of the water masses replaced the warmer ones in 2014 with respect to 2002–2010, in agreement with the long-term cooling of the North Atlantic Subpolar Gyre that started in the mid-2000s. Below 2000 dbar, ISOW increased its contribution in 2014 with respect to 2002–2010, with the increase being consistent with other estimates of ISOW transports along 58–59° N. We also observed an increase in SPMW in the East Greenland Irminger Current in 2014 with respect to 2002–2010, which supports the recent deep convection events in the Irminger Sea. From the assessment of the relative water mass contribution to the Atlantic Meridional Overturning Circulation (AMOC) across the OVIDE line, we conclude that the larger AMOC intensity in 2014 compared to the 2002–2010 mean was related to both the increase in the northward transport of Central Waters in the AMOC upper limb and to the increase in the southward flow of Irminger Basin SPMW and ISOW in the AMOC lower limb.


2020 ◽  
Author(s):  
Andreas Lückge ◽  
Jeroen Groeneveld ◽  
Martina Hollstein ◽  
Mahyar Mohtadi ◽  
Enno Schefuß ◽  
...  

<p>The Dansgaard-Oeschger oscillations and Heinrich events described in Greenland ice core records are also expressed in the climate of the tropical realm as for instance documented in Arabian Sea sediments. However, little is known about these fluctuations beyond the reach of the Greenland ice cores. Here, we present high-resolution organic- and inorganic geochemical, sedimentological as well as micropaleontological data from two cores retrieved off the coast of Pakistan, extending the monsoon record to the past 200,000 years in millennial scale resolution.</p><p>The stable oxygen isotope (δ<sup>18</sup>O) record of the planktic foraminifera G. ruber shows a strong correspondence to Greenland ice core δ<sup>18</sup>O, whereas the deepwater δ<sup>18</sup>O signal of benthic foraminifera (U. peregrina and G. affinis) reflects patterns similar to those observed in Antarctic ice core records. Strong shifts in benthic δ<sup>18</sup>O during stadials are interpreted to show frequent injections of oxygen-rich intermediate water masses of Southern Ocean origin into the Arabian Sea. Alkenone-derived SSTs vary between 23 and 28°C. Highest temperatures were encountered during interglacial MIS 5. Millennial scale SST changes of 2°C magnitude are modulated by long-term SST fluctuations. Interstadials (of glacial phases) and the cold phases of interglacials are characterized by sediments enriched in organic carbon (TOC) whereas sediments with low TOC contents appear during stadials. Abrupt shifts (50-60 year duration) at climate transitions, such as interstadial inceptions, correlate with changes in productivity-related and anoxia-indicating proxies. Interstadial inorganic data consistently show that enhanced fluxes of terrestrial-derived sediments are paralleled by productivity maxima, and are characterized by an increased fluvial contribution from the Indus River. The hydrogen isotopic composition of terrigenous plant waxes indicates that stadials are dry phases whereas humid conditions seem to have prevailed during interstadials. In contrast, stadials are characterized by an increased contribution of aeolian dust probably from the Arabian Peninsula. Heinrich events are especially dry and dusty, indicating a dramatically weakened Indian summer monsoon and increased continental aridity.</p><p>These results strengthen the evidence that North Atlantic temperature changes and shifts in the hydrological cycle of the Indian monsoon system are closely coupled, and had a massive impact on regional environmental conditions such as river discharge and ocean margin anoxia. These shifts were modulated by changes in the supply of water masses from the Southern Hemisphere.</p>


2020 ◽  
Author(s):  
Nicolai Schleinkofer ◽  
Jacek Raddatz ◽  
David Evans ◽  
Axel Gerdes ◽  
Silke Voigt ◽  
...  

<p>Phytoplankton is one of the most important producers of oxygen, and plays an important role in the export of large amounts of carbon to the deeper ocean. Since phytoplankton is also the basis of most food webs in the ocean, understanding the dynamic system of phytoplankton is a crucial part to understand past carbon- and nutrient cycles and paleoclimatic changes. The export of nutrients is also an important factor impacting cold-water coral (CWC) reefs and may play a role in controlling their distribution. Here we present laser ablation inductively coupled mass spectrometer (LA-ICP-MS) Element/Ca measurements from Acesta excavata, a file clam, often associated with cold-water coral reefs along the European continental margin. Environmental parameters were recorded with lander systems directly deployed in the CWC reefs, which allows us to compare our geochemical data to in-situ ocean data.</p><p>Our results reveal, that Ba/Ca ratios show stable baseline values with intermittent sharp peaks. The location of these peaks in between major growth lines and temperature reconstructions with Mg/Sr ratios (Schleinkofer et al., submitted) show that these peaks occur during Winter and are repeatable between samples from the same location. This indicates a strong external forcing mechanism and allows cross-dating of different bivalve shells. While the occurrence of Ba/Ca peaks correlates with phytoplankton maxima, the absolute Ba/Ca ratio does not correlate with the phytoplankton abundance.</p><p>Mn/Ca ratios show similar trends as Ba/Ca ratios but the peaks are phase shifted and occur slightly delayed. These peaks could be triggered by decreasing oxygen concentrations in the water caused by the decomposition of organic material.</p><p>As A. excavata does not show easily distinguishable growth lines under the light microscope despite of Mutvei staining or fluorescence microscopy, we hypothesize that P/Ca ratios might be usable to locate highly phosphorylated shell areas that usually correlate with major growth lines. P/Ca ratios show no perceivable features in the vicinity of major growth lines. Instead we recognize that Ba/Ca peaks follow a minimum in P/Ca which is possibly caused by the uptake of phosphor by plankton.</p><p>These results suggest that A. excavata have potential as a promising tool for high resolution paleoenvironmental reconstructions of both intermediate and overlying surface water masses.</p><p>References</p><p>Schleinkofer N, Raddatz J, Evans D, Gerdes A, Flögel S, Voigt S, et al. Elemental to calcium ratios in the marine bivalve Acesta excavata: an archive for high-resolution paleoceanographic reconstructions of intermediate water masses. PLoS One. Submitted</p>


2016 ◽  
Vol 1 (2) ◽  
pp. 17
Author(s):  
Dewi Surinati ◽  
Edi Kusmanto

<strong>Stratification of Water Mass in Lasolo Bay, Southeast Sulawesi.</strong> As a nature conservation area, Lasolo Bay should be supported by data and information of waters oceanographic. Research for stratification of water masses in Lasolo Bay was conducted. from 10 to 19 July 2011. Temperature and salinity data were obtained using CTD SBE 911 Plus preinstalled on Research Vessel Baruna Jaya VIII at intervals of 24 data per second. Current data were obtained using Vessel Mounted Acoustic Doppler Current Profiler (VMADCP) with an interval of two seconds. The results show that there are differences in the speed and direction of currents in the water column that lead to stratification of water masses. Currents that drove the water mass of Banda Sea into Lasolo Bay was caused by southeasterly winds with an average speed of 4.1 m/s. At depths of 0–50 m and 100–200 m the current dominance occurs to the northwest, while at depths of 50–100 m and 200–350 m it occurs to the south. The water mass with a salinity of 32.1–34.0 PSU and temperature 26–28°C occupied the surface layer (0–50 m). The water mass with a salinity of 34.4–34.5 PSU identified as the water mass of North Pacific Intermediate Water (NPIW) occupied two depths, i.e. 50–100 m and 200–350 m with different range of temperatures. The water mass with maximum salinity (34.5–34.6 PSU), identified as the water mass of North Pacific Subtropical Water (NPSW) also occupied two depths i.e. 100–200 m and 350 m until near the bottom with different range of temperatures<br /><br />


1964 ◽  
Vol 15 (1) ◽  
pp. 25 ◽  
Author(s):  
DJ Rochford

The following seven water masses have been identified, and their distribution traced during several seasons of the year: Red Sea mass, with the same distribution and properties in 1962 as the north-west Indian Intermediate described in 1959-60; Persian Gulf mass, which is confined to the region south of Indonesia and is limited in extent of easterly flow by the opposing flow of Banda Intermediate water; upper salinity minimum mass, entering via Lombok Strait and moving zonally in the direction of the prevailing surface currents, a secondary movement of this water mass towards north-west Australia is limited by the northern boundary of a south-east Indian high salinity water mass. This latter water mass occurs as three separate core layers north of 22-23� S. The deep core layer mixes with waters of the oxygen maximum below it, the mid-depth core layer mixes with Persian Gulf and upper salinity minimum water masses, and the upper core layer mixes with the Arabian Sea water mass. The latter water mass spreads eastwards to about 120� E. and southwards to north-west Australia, in conformity with surface currents. A sixth water mass enters with the counter-current and is found as a salinity maximum within the thermocline to about 20� S. A seventh water mass characterized by a salinity maximum around temperatures of 28-29�C has a limited distribution and an unknown origin. Both of these water masses move in the direction of surface currents.


Sign in / Sign up

Export Citation Format

Share Document