scholarly journals The distonic ion ·CH2CH2CH+OH, keto ion CH3CH2CH=O +·, enol ion CH3CH=CHOH+·, and related C3H6O+· radical cations. Stabilities and isomerization proclivities studied by dissociation and neutralization-reionization

1996 ◽  
Vol 7 (6) ◽  
pp. 573-589 ◽  
Author(s):  
Michael J. Polce ◽  
Chrys Wesdemiotis
Keyword(s):  
2005 ◽  
Vol 11 (4) ◽  
pp. 381-387 ◽  
Author(s):  
Thanasis Karapanayiotis ◽  
Richard D. Bowen

Ionised benzimidazole and its isomeric α-distonic ion (or ionised ylid) have been examined by recording their metastable ion, collision-induced dissociation and neutralisation–reionisation mass spectra. These tautomers may be distinguished by careful consideration of key features of the collision-induced dissociation spectra, with or without prior neutralisation and reionisation. Formation of doubly-charged ions by charge stripping occurs preferentially when the α-distonic ion is subjected to collision. This α-distonic ion survives neutralisation and reionisation, thus establishing that the corresponding ylid is stable on the microsecond time frame. The effects of benzannulation on the ease of differentiation of classical and distonic radical cations derived from biologically important heterocycles are considered.


2009 ◽  
Vol 15 (2) ◽  
pp. 131-144 ◽  
Author(s):  
Dirk Kirchhoff ◽  
Hans-Friedrich Grützmacher ◽  
Hansjörg Grützmacher

The mass spectrometric reactions of dimethylphenyl phosphane, 1, under electron impact have been studied by methods of tandem mass spectrometry and by using labeling with deuterium. The results are compared to those for the previously investigated dimethylaniline, 2, and dimethylphenyl arsane, 3, to examine the effects of heavy main group heteroatoms on the reactions of radical cations of the pnictogen derivatives C6H5E(CH3)2. Decomposition of the radical cation 1•+ gives rise to large peaks in the 70 eV electron impact (EI) mass spectrum for loss of a radical, •CH3, which is followed by abundant loss of a molecule, H2, and formation of ion C7H7+, and the 70 eV EI mass spectrum of the deuterated derivative 1d3 shows that excessive positional hydrogen/deuterium (H/D) exchange accompanies all fragmentation reactions. This is confirmed by the mass analyzed kinetic energy (MIKE) spectrum of the molecular ion 1d6•+ which displays a group of signals for the loss of all isotopomers, •C(H/D)3, and three signals for formation of ions C7H5D2+, C7H4D3+ and C7H3D4+. The intensity distribution within this latter group of ions corresponds to a statistical positional exchange (“scrambling”) of all six D atoms of the methyl substituents with only two H atoms of the phenyl group. In contrast, the intensity distribution of the signals for loss of •C(H/D)3 uncovers a bimodal reaction. About 39% of metastable molecular ions 1•+ eliminate •CH3 after scrambling of the six H atoms of the methyl substituents with two H atoms of the phenyl group, while the remaining 61% of metastable 1•+ lose specifically a CH3 substituent without positional H exchange. Further, the metastable ion [M – CH3]+ eliminates, almost exclusively, a molecule H2, which is preceded by excessive positional H/D exchange in the case of metastable ion [M – CD3]+. The formation of ion C7H7+ from metastable ion [M – CH3]+ is not observed and this is a minor process, even under the high energy condition of collision-induced dissociation (CID). The mechanisms of these fragmentation and exchange reactions have been modeled by theoretical calculations using the DFT functionals at the level UHBLY/6-311+G(2d,p)//UHBLYP/6-31+G(d). The key feature is a rearrangement of molecular ion 1•+ to an α-distonic isomer 1dist1•+ by a 1,2-H shift from the CH3 substituent to the P atom in competition with a direct loss of a CH3 substituent. The distonic ion 1dist1•+ performs positional H exchange between H atoms of both CH3 substituents and H atoms at the ortho-positions of the phenyl group and rearranges readily to the (conventional) isomer benzylmethyl phosphane radical cation 1bzl•+. The ion 1bzl•+ undergoes further positional H exchange before decomposition to ion C7H7+ and a radical CH3P•H or by loss of a radical •CH3. Finally, ions [M – CH3]+ of methylphenyl phosphenium structure 1a+ and benzyl phosphenium structure 1b+ interconvert easily parallel to positional H exchange involving all H atoms of the ions. Eventually, a molecule H2 is lost by a 1,1-elimination from the PH2 group of the protomer 1b–H+ of 1b+. The trends observed in the gas phase chemistry of the pnictogen radical cations dimethylaniline 2•+, dimethylphenyl phosphane 1•+ and dimethylphenyl arsane 3•+ can be comprehended by considering the variation of the energetic requirements of three competing reaction: (i) α-cleavage by loss of •H from a methyl substituent, (ii) rearrangement of the molecular ion to an α-distonic isomer by a 1,2-H shift and (iii) loss of •CH3 by cleavage of the C-heteroatom bond. 2•+ exhibits a strong N–C bond and a high activation barrier for 1,2-H shift and fragments far more predominantly by α-cleavage. Both 1•+ and 3•+ eliminate •CH3 by cleavage of the weak C-heteroatom bond. The barrier for a 1,2-H shift is also distinctly smaller than for 2•+ and, for the P-derivative 1•+, the generation of the α-distonic ion is able to compete with loss of •CH3.


2020 ◽  
Author(s):  
Oisin Shiels ◽  
P. D. Kelly ◽  
Cameron C. Bright ◽  
Berwyck L. J. Poad ◽  
Stephen Blanksby ◽  
...  

<div> <div> <div> <p>A key step in gas-phase polycyclic aromatic hydrocarbon (PAH) formation involves the addition of acetylene (or other alkyne) to σ-type aromatic radicals, with successive additions yielding more complex PAHs. A similar process can happen for N- containing aromatics. In cold diffuse environments, such as the interstellar medium, rates of radical addition may be enhanced when the σ-type radical is charged. This paper investigates the gas-phase ion-molecule reactions of acetylene with nine aromatic distonic σ-type radical cations derived from pyridinium (Pyr), anilinium (Anl) and benzonitrilium (Bzn) ions. Three isomers are studied in each case (radical sites at the ortho, meta and para positions). Using a room temperature ion trap, second-order rate coefficients, product branching ratios and reaction efficiencies are reported. </p> </div> </div> </div>


1993 ◽  
Vol 58 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Rudolf Zahradník

The energies and heats of ion-molecule reactions have been calculated (MP4/6-31G**//6-31G** or better level) and compared with the experimental values obtained from the heats of formation. Two main types of reactions have been studied: (i) AHn + AHn+• ↔ AHn+1+ + AHn-1• (A = C to F and Si to Cl), (ii) AHn + BHm+• ↔ AHn+1+ + BHm-1• or AHn-1+• + BHm+1+ (A and B = C to F). In contrast to (i), processes of type (ii) permit easy differentiation between the proton transfer and hydrogen atom abstraction mechanisms. A third type of interaction involves reactions with radical anions (A = Li to F); comparison was made with analogous processes with radical cations. A brief comment is made about the influence of the level of computational sophistication on the energies and heats of reaction, as well as on the stabilization energy of a hydrogen bonded intermediate, a structure which is similar to that of the reaction products.


1990 ◽  
Vol 55 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Zdeněk Friedl ◽  
Stanislav Böhm

The relative enthalpies of proton transfer δ ΔH0and homolytic bond strengths δDH0(B-H+) were calculated by the MNDO method for the sp and ap conformers of 4-flurobutylamine. The data obtained, along with the experimental gas phase basicities, are compared with the values predicted by the electrostatic theory. It is shown that the substituent polar effects FD on the basicities of amines are predominantly due to interactions in their protonated forms (X-B-H+) and/or radical-cations (X-B+.), those in the neutral species (X-B) playing a minor part. A contribution, which is considerably more significant in the sp conformer than in the ap conformer, arises probably also from substituent effects on the homolytic bond strength DH0(B-H+.


2003 ◽  
Vol 68 (12) ◽  
pp. 2322-2334 ◽  
Author(s):  
Robert Vianello ◽  
Zvonimir B. Maksić

The electronic and energetic properties of thymine (1) and 2-thiothymine (2) and their neutral and positively charged radicals are considered by a combined ab initio and density functional theory approach. It is conclusively shown that ionization of 1 and 2 greatly facilitates deprotonation of the formed radical cations thus making the proton transfer between charged and neutral precursor species thermodynamically favourable. The adiabatic ionization potential of 1 and 2 are analysed. It appears that ADIP(1) is larger than ADIP(2) by 10 kcal/mol, because of greater stability of the highest occupied molecular orbital (HOMO) of the former. It is also shown beyond any doubt that the spin density in neutral and cationic radical of 2 is almost exclusively placed on the σ-3p AO of sulfur implying that these two systems represent rather rare sigma-radicals. In contrast, the spin density of radicals of 1 is distributed over their π-network.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3282
Author(s):  
Alina Secrieru ◽  
Rabah Oumeddour ◽  
Maria L. S. Cristiano

1,4- and 1,5-disubstituted tetrazoles possess enriched structures and versatile chemistry, representing a challenge for chemists. In the present work, we unravel the fragmentation patterns of a chemically diverse range of 5-allyloxy-1-aryl-tetrazoles and 4-allyl-1-aryl-tetrazolole-5-ones when subjected to electron impact mass spectrometry (EI-MS) and investigate the correlation with the UV-induced fragmentation channels of the matrix-isolated tetrazole derivatives. Our results indicate that the fragmentation pathways of the selected tetrazoles in EI-MS are highly influenced by the electronic effects induced by substitution. Multiple pathways can be envisaged to explain the mechanisms of fragmentation, frequently awarding common final species, namely arylisocyanate, arylazide, arylnitrene, isocyanic acid and hydrogen azide radical cations, as well as allyl/aryl cations. The identified fragments are consistent with those found in previous investigations concerning the photochemical stability of the same class of molecules. This parallelism showcases a similarity in the behaviour of tetrazoles under EI-MS and UV-irradiation in the inert environment of cryogenic matrices of noble gases, providing efficient tools for reactivity predictions, whether for analytical ends or more in-depth studies. Theoretical calculations provide complementary information to articulate predictions of resulting products.


2021 ◽  
Author(s):  
Jessica R. Lamb ◽  
Christopher M. Brown ◽  
Jeremiah A. Johnson

N-heterocyclic carbene-carbodiimide betaine adducts are zwitterionic amidinate-like structures with tunable properties that have applications as ligands, junctions in supramolecular polymers, and stabilizers for radical cations.


Sign in / Sign up

Export Citation Format

Share Document