FLOW PATTERN OF BULK SOLIDS IN FLAT BOTTOMED MODEL BINS

Author(s):  
J. Šmíd
Keyword(s):  
Author(s):  
M Daas ◽  
A. V. Retnaswamy ◽  
R Srivastava

An investigation of flow problems and solutions, associated with bulk solids discharging from conical-bottom cylindrical storage containers, is presented in this paper. The feasibility and efficiency of bulk solids discharging from these containers are directly associated with the flow pattern of the solids. The influence of a new vessel design on the flow pattern and the discharge rate of solids was examined. Glass beads of fixed particle size distribution and density were used to conduct the study. Retrofitting techniques that are commonly used to improve the flow pattern characteristics in silos were reviewed. Two techniques, utilization of inserts and hopper in hopper were investigated, and the results from the first technique are discussed. This technique is based on the usage of a double pyramid-shaped insert to manipulate the flow pattern of discharging solids. Both dry and wet tests were conducted under a wide range of low to moderate pressures. The results from both dry and wet tests showed that the pyramid insert was able to significantly change the flow pattern from the undesired funnel flow to the most desired mass flow and also increase the rate of discharge.


Author(s):  
Y. Pan

The D defect, which causes the degradation of gate oxide integrities (GOI), can be revealed by Secco etching as flow pattern defect (FPD) in both float zone (FZ) and Czochralski (Cz) silicon crystal or as crystal originated particles (COP) by a multiple-step SC-1 cleaning process. By decreasing the crystal growth rate or high temperature annealing, the FPD density can be reduced, while the D defectsize increased. During the etching, the FPD surface density and etch pit size (FPD #1) increased withthe etch depth, while the wedge shaped contours do not change their positions and curvatures (FIG.l).In this paper, with atomic force microscopy (AFM), a simple model for FPD morphology by non-crystallographic preferential etching, such as Secco etching, was established.One sample wafer (FPD #2) was Secco etched with surface removed by 4 μm (FIG.2). The cross section view shows the FPD has a circular saucer pit and the wedge contours are actually the side surfaces of a terrace structure with very small slopes. Note that the scale in z direction is purposely enhanced in the AFM images. The pit dimensions are listed in TABLE 1.


Author(s):  
E. G. Rightor

Core edge spectroscopy methods are versatile tools for investigating a wide variety of materials. They can be used to probe the electronic states of materials in bulk solids, on surfaces, or in the gas phase. This family of methods involves promoting an inner shell (core) electron to an excited state and recording either the primary excitation or secondary decay of the excited state. The techniques are complimentary and have different strengths and limitations for studying challenging aspects of materials. The need to identify components in polymers or polymer blends at high spatial resolution has driven development, application, and integration of results from several of these methods.


Sign in / Sign up

Export Citation Format

Share Document