Material Aspects in Adhesion, Galling, and Adhesive Wear

Author(s):  
J.A. Schey
Keyword(s):  
Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 735
Author(s):  
Songchen Wang ◽  
Xianchen Yang ◽  
Xinmei Li ◽  
Cheng Chai ◽  
Gen Wang ◽  
...  

The objective of this study was to investigate the wear characteristics of the U-shaped rings of power connection fittings, and to construct a wear failure prediction model of U-shaped rings in strong wind environments. First, the wear evolution and failure mechanism of U-shaped rings with different wear loads were studied by using a swinging wear tester. Then, based on the Archard wear model, the U-shaped ring wear was dynamically simulated in ABAQUS, via the Umeshmotion subroutine. The results indicated that the wear load has an important effect on the wear of the U-shaped ring. As the wear load increases, the surface hardness decreases, while plastic deformation layers increase. Furthermore, the wear mechanism transforms from adhesive wear, slight abrasive wear, and slight oxidation wear, to serious adhesive wear, abrasive wear, and oxidation wear with the increase of wear load. As plastic flow progresses, the dislocation density in ferrite increases, leading to dislocation plugs and cementite fractures. The simulation results of wear depth were in good agreement with the test value of, with an error of 1.56%.


2015 ◽  
Vol 651-653 ◽  
pp. 473-479 ◽  
Author(s):  
Marco Teller ◽  
Markus Bambach ◽  
Gerhard Hirt ◽  
Ingo Ross ◽  
André Temmler ◽  
...  

In cold extrusion of aluminum alloys adhesive wear can be prevented by an excessive lubrication of the process. While this causes additional process steps also environmental risks have to be addressed. Hence, dry metal forming, i.e. avoiding lubrication by means of coatings and topography modifications is highly desirable. In this paper first results concerning the behavior of tailored surfaces under dry metal forming conditions for pure aluminum are presented. Different surface treatments (laser polishing and Mo2BC coating) of the tool steel AISI H11 are tested in a compression-torsion-tribometer under conditions adapted from cold extrusion. Normal stresses six times higher than the initial yield stress of the tested workpiece material pure aluminum (AA1050-O) are applied. Furthermore, a strategy for the characterization of aluminum adhesions to the tool is introduced. The influences of different topographies and the presence of a coating on the loss of material due to adhesive wear are investigated.


2008 ◽  
Vol 32 (3) ◽  
pp. 199-208 ◽  
Author(s):  
B. F. Yousif ◽  
N. S. M. El-Tayeb

Sign in / Sign up

Export Citation Format

Share Document