Adhesive Wear Performance of T-OPRP and UT-OPRP Composites

2008 ◽  
Vol 32 (3) ◽  
pp. 199-208 ◽  
Author(s):  
B. F. Yousif ◽  
N. S. M. El-Tayeb
2014 ◽  
Vol 5 ◽  
pp. 1192-1197 ◽  
Author(s):  
A. JohnneyMertens ◽  
S. Senthilvelan

2009 ◽  
Vol 16 (03) ◽  
pp. 407-414 ◽  
Author(s):  
B. F. YOUSIF ◽  
ALVIN DEVADAS ◽  
TALAL F. YUSAF

In the current study, a multilayered polyester composite based on betelnut fiber mats is fabricated. The adhesive wear and frictional performance of the composite was studied against a smooth stainless steel at different sliding distances (0–6.72 km) and applied loads (20–200 N) at 2.8 m/s sliding velocity. Variations in specific wear rate and friction coefficient were evaluated at two different orientations of fiber mat; namely parallel (P–O) and normal (N–O). Results obtained were presented against sliding distance. The worn surfaces of the composite were studied using an optical microscope. The effect of the composite sliding on the stainless steel counterface roughness was investigated. The results revealed that the wear performance of betelnut fiber reinforced polyester (BFRP) composite under wet contact condition was highly dependent on test parameters and fiber mat orientation. The specific wear rate performance for each orientation showed an inverse relationship to sliding distance. BFRP composite in N–O exhibited better wear performance compared with P–O. However, the friction coefficient in N–O was higher than that in P–O at lower range of applied load. The predominant wear mechanism was debonding of fiber with no pullout or ploughing. Moreover, at higher applied loads, micro- and macrocracking and fracture were observed in the resinous region.


2008 ◽  
Vol 15 (06) ◽  
pp. 919-925 ◽  
Author(s):  
D. DANAELAN ◽  
B. F. YOUSIF

The tribo-performance of a new engineering composite material based on coconut fibers was investigated. In this work, coconut fibers reinforced polyester (CFRP) composites were developed. The tribo-experiments were conducted by using pin-on-disc machine under dry and wet sliding contact condition against smooth stainless steel counterface. Worn surfaces were observed using optical microscope. Friction coefficient and specific wear rate were presented as a function of sliding distance (0–0.6 km) at different sliding velocities (0.1–0.28 m/s). The effect of applied load and sliding velocity was evaluated. The results showed that all test parameters have significant influence on friction and wear characteristics of the composites. Moreover, friction coefficient increased as the normal load and speed increased, the values were about 0.7–0.9 under dry contact condition. Meanwhile, under wet contact condition, there was a great reduction in the friction coefficient, i.e. the values were about 0.1–0.2. Furthermore, the specific wear rates were found to be around 2–4 (10-3) mm3/Nm under dry contact condition and highly reduced under wet condition. In other words, the presence of water as cleaner and polisher assisted to enhance the adhesive wear performance of CFRP by about 10%. The images from optical microscope showed evidence of adhesive wear mode with transition to abrasive wear mode at higher sliding velocities due to third body abrasion. On the other hand, optical images for wet condition showed less adhesive wear and smooth surfaces.


2013 ◽  
Vol 764 ◽  
pp. 55-59
Author(s):  
Zhan Bin Guo ◽  
Song Lin Gao

The friction and wear properties of several common metal materials (45#, 25CrMn, and 40CrNiMo) friction pair under oil lubrication was investigated on M-200 Type wear tester, and studied the friction under the condition of differ sliding speed and pressure. The results show that: the 25CrMn/45# steel pair has better tribological and wear performance; the load is the main factor which influences the friction of the material at the low sliding speed; the main wear form is adhesive wear, but the wear mechanism is gradually became from adhesive wear to abrasive wear and flaking wear with the contact pressure and sliding speed increased.


2019 ◽  
Author(s):  
Pedro Gabriel Bonella de Oliveira ◽  
Ricardo Tadeu Junior Aureliano ◽  
Luiz Carlos Casteletti ◽  
André Itman Filho ◽  
Amadeu Lombardi Neto ◽  
...  

Abstract The quest for safety improvement with weight reduction of vehicles and consequently lower fuel consumption, led the automotive industry to begin research into the third generation of advanced high strength steels. These steels present complex microstructures, composed of martensite, bainite and stable retained austenite. Two of the main treatments for obtaining these microstructures are the low temperature austempering and Quenching and Partitioning (Q&P). The objective of this work is to evaluate the microhardness and adhesive wear performance of a high silicon steel alloyed with niobium submitted to the treatments mentioned above. The austempering treatment was conducted at 340 °C for 1 and 3 hours. Partitioning steps in Q&P were performed at 250 °C for 10, 30 and 60 minutes. Results shows that niobium addition promotes changes in the bainite morphology which improved the wear resistance.


Materials ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 149 ◽  
Author(s):  
Chuanyi Xue ◽  
Shouren Wang ◽  
Daosheng Wen ◽  
Gaoqi Wang ◽  
Yong Wang

In this research, nanocomposite carbon has been found to have excellent tribological properties as a lubricant additive. To reduce high friction and wear in friction pairs, the modified nanocomposite carbon has been prepared for chemical technology. The morphology and microstructure of the modified nanocomposite carbon were investigated via TEM, SEM, EDS, XPS, and Raman. In this study, varying concentrations (1, 3, and 5 wt. %) within the modified nanocomposite carbon were dispersed at 350 SN lubricant for base oil. The suspension stability of lubricating oils with the modified nanocomposite carbon was determined by ultraviolet-visible light (UV-VIS) spectrophotometry. The friction and wear characteristics of lubricants containing materials of the modified nanocomposite carbon were evaluated under reciprocating test conditions to simulate contact. The morphology and microstructure of the friction pair tribofilms produced during frictional contact were investigated via SEM, EDS, and a 3D surface profiler. The results showed that scratches, pits, grooves, and adhesive wear were significantly reduced on the surface of the friction pair which was used with 3% nanocomposite carbon lubricant. Additionally, the modified nanocomposite carbon showed excellent friction reducing and anti-wear performance, with great potential for the application of anti-wear.


2010 ◽  
Vol 113-116 ◽  
pp. 1930-1934
Author(s):  
Zhen Duo Han ◽  
Chao Qu ◽  
Yu Xing Peng ◽  
Guo An Chen ◽  
Yi Lei Li

A wear tester was developed. MC PA (nylon) filled with MoS2 and PU (polyurethane) were used as the material of the rubber wheel of roller guide shoes. Their wear performances was investigated with the tester. The results show that the wear rate of MC PA increases firstly and then decreases with increasing load, and reverses with increasing velocity. The wear rate of PU decreases firstly and then increases with increasing velocity. In addition, the main wear mechanisms of PU are plough wear and abrasive wear at the low load (200N). At the loads of 200N~500N, the main wear form of MC PA is the adhesive wear. Adhesive wear is the main mechanism of MC PA at the low velocity (3m/s). Due to inner heat accumulation by friction, squama-peering occurs on MC PA surface at the high velocity (8m/s). The dominant wear mechanisms of PU are abrasive wear and fatigue pitting. And the main reason of PU’s failure is the interior heat accumulation caused by friction.


Friction ◽  
2021 ◽  
Author(s):  
K. Y. Eayal Awwad ◽  
B. F. Yousif ◽  
Khosro Fallahnezhad ◽  
Khalid Saleh ◽  
Xuesen Zeng

AbstractEpoxy resin is one of the most widely used thermoset polymers in high-performance composite materials for lightweight applications. However, epoxy has a high coefficient of friction, which limits its tribological applications. In this study, the effect was investigated of different weight fractions of solid lubricant graphene nanoplatelets (GNPs), ranging from 0 to 4.5 wt%, on mechanical and adhesive wear performance of epoxy. Adhesive wear tests covered mild and severe wear regimes. The correlation of tribological and mechanical properties was studied as well. Scanning electron microscopy (SEM) was used to observe the failure mechanisms for both tribological and mechanical samples after each test. The results revealed that the addition of GNPs to the epoxy improved its stiffness and hardness but reduced its fracture strength and toughness. Adhesive wear performance exhibited high efficiency with GNP additions and showed reductions in the specific wear rate, the coefficient of friction, and the induced interface temperature by 76%, 37%, and 22%, respectively. A fatigue wear mechanism was predominant as the applied load increased. Most importantly, severe wear signs occurred when the interface temperature reached the heat distortion temperature of the epoxy. The tribological, and mechanical properties showed only a weak correlation to each other. The addition of GNPs to epoxy by less than 4.5 wt% was highly efficient to improve the wear performance while maintaining the fracture strength and toughness. Fourier transform infrared spectroscopy (FTIR) analysis shows no chemical interaction between the epoxy matrix with GNPs, which implies its physical interaction.


Sign in / Sign up

Export Citation Format

Share Document