Determining the cause of a carbon steel joint failure in a gas flow pipeline production facility

Author(s):  
Abdel S.H. Makhlouf ◽  
Ahmed Z. Farahat
2013 ◽  
Vol 762 ◽  
pp. 253-260 ◽  
Author(s):  
Shan Yu ◽  
Jyrki Miettinen ◽  
Seppo Louhenkilpi

The steelmaking field has been seeing an increased demand of reducing hydrogen and nitrogen in liquid steel before casting. This is often accomplished by vacuum treatment. This paper focuses on developing a numerical model to investigate the removal of hydrogen and nitrogen from the melt of medium carbon steel in a commercial vacuum tank degasser. An activity coefficient model and the eddy-cell expression are implemented in the ANSYS FLUENT code to compute the activities of related elements and mass transfer coefficients of hydrogen and nitrogen in liquid steel. Several cases are simulated to assess the effect of gas flow rate and initial nitrogen content in liquid steel on degassing process and the calculated results are compared with industrial measured data.


Author(s):  
Michael A. Porter ◽  
Dennis H. Martens ◽  
Thomas Duffy ◽  
Sean McGuffie

Many modern Sulfur Recovery Unit (SRU) process waste heat recovery exchangers operate in high temperature environments. These exchangers are associated with the thermal reactor system where the tubesheet/tube/ferrule assemblies are exposed to gasses at temperatures approaching 3000°F. Because sulfur compounds are present in the process gas, the carbon steel tubesheet and tubes in the assembly will be deteriorated by sulfidation as the operating metal temperature rises above 600°F. Ferrule systems are used to protect the carbon steel from exposure to excessive temperatures. The temperature distribution in the steel tubesheet/tube/ferrule system is affected by process gas flow and heat transfer through the assembly. Rather than depend upon “assumed” heat transfer coefficients and fluid flow distribution, a Computational Fluid Dynamics (CFD) investigation was conducted to study the flow fields and heat transfer in the tubesheet assembly. It was found that the configuration of the ferrule installation has a large influence on the temperature distribution in the steel materials and, therefore, the possible sulfidation of the carbon steel parts.


2014 ◽  
Vol 8 (5) ◽  
pp. 1 ◽  
Author(s):  
A. J. Saad ◽  
Triyono Triyono ◽  
A. Supriyanto ◽  
N. Muhayat ◽  
Z. Yuliadi

Holding time is used for optimizing the bond diffusion between aluminum Al and Carbon steel SS400. The objective of this research was to investigate the effects of holding time on the interface reactions of diffusion welding between aluminum and carbon steel. Holding time variations of 10, 15, 30 and 45 minutes were applied at 950°C using mixture of Cu and Fe powder as elements promoter. Single lap joint configuration was performed in vacum furnace to join the dissimilar materials which allowed bonding diffusion. Microstructure was examined on the same test piece. It was found that during diffusion process at 950°C, the interfacial zone between aluminum and carbon steel substrate features intermetallic layers. The intermetallic thickness increased with increasing the holding time. Crack or incomplete bonding appeared on the specimens with holding time up to 30 minutes and didn’t appear on the specimens with holding time of 45 minutes. Cu rich-element promoter made diffusion penetrated deeper than Fe rich-element promoter in the same holding time. Macrostructure, microstructure and SEM examinations revealed that Al-steel joint had the best result with element promoter content of 60/40 % at 45 minutes holding time. There was no interlayer gap at this specimen. Additionally, from mapping view it can be suggested that in terms of poor interface bonding, Cu molecules were located just around the interface area, on the other hand, in case of strong interface bonding, Cu molecules are scattered throughout the specimen. In fact, the position of Cu molecules can be used as a promising marker for the detection of quality of diffusion joint.


2018 ◽  
Vol 49 (2) ◽  
pp. 699-708 ◽  
Author(s):  
Luis Fernando Kanan ◽  
Buchibabu Vicharapu ◽  
Antonio Fernando Burkert Bueno ◽  
Thomas Clarke ◽  
Amitava De

Sign in / Sign up

Export Citation Format

Share Document