Environment friendly green data broadcasting in delay-tolerant opportunistic networks

Author(s):  
Sanjay K. Dhurandher ◽  
Jagdeep Singh ◽  
Isaac Woungang ◽  
Jahanavi Mishra ◽  
Tarun Dhankhar
2013 ◽  
pp. 315-359 ◽  
Author(s):  
Teemu Kärkkäinen ◽  
Mikko Pitkanen ◽  
Joerg Ott

Author(s):  
Vandana Kushwaha ◽  
Ratneshwer Gupta

Opportunistic networks are one of the emerging evolutions of the network system. In opportunistic networks, nodes are able to communicate with each other even if the route between source to destination does not already exist. Opportunistic networks have to be delay tolerant in nature (i.e., able to tolerate larger delays). Delay tolerant network (DTNs) uses the concept of “store-carry-forward” of data packets. DTNs are able to transfer data or establish communication in remote area or crisis environment where there is no network established. DTNs have many applications like to provide low-cost internet provision in remote areas, in vehicular networks, noise monitoring, extreme terrestrial environments, etc. It is therefore very promising to identify aspects for integration and inculcation of opportunistic network methodologies and technologies into delay tolerant networking. In this chapter, the authors emphasize delay tolerant networks by considering its architectural, routing, congestion, and security issues.


Electronics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1915
Author(s):  
Shupei Chen ◽  
Zhigang Chen ◽  
Jia Wu ◽  
Kanghuai Liu

In opportunistic networks, the requirement of QoS (quality of service) poses several major challenges to wireless mobile devices with limited cache and energy. This implies that energy and cache space are two significant cornerstones for the structure of a routing algorithm. However, most routing algorithms tackle the issue of limited network resources from the perspective of a deterministic approach, which lacks an adaptive data transmission mechanism. Meanwhile, these methods show a relatively low scalability because they are probably built up based on some special scenarios rather than general ones. To alleviate the problems, this paper proposes an adaptive delay-tolerant routing algorithm (DTCM) utilizing curve-trapezoid Mamdani fuzzy inference system (CMFI) for opportunistic social networks. DTCM evaluates both the remaining energy level and the remaining cache level of relay nodes (two-factor) in opportunistic networks and makes reasonable decisions on data transmission through CMFI. Different from the traditional fuzzy inference system, CMFI determines three levels of membership functions through the trichotomy law and evaluates the fuzzy mapping from two-factor fuzzy input to data transmission by curve-trapezoid membership functions. Our experimental results show that within the error interval of 0.05~0.1, DTCM improves delivery ratio by about 20% and decreases end-to-end delay by approximate 25% as compared with Epidemic, and the network overhead from DTCM is in the middle horizon.


2012 ◽  
Vol 4 ◽  
pp. 13-18
Author(s):  
Qi Lie Liu ◽  
Guang De Li ◽  
Yun Li ◽  
Ying Jun Pan ◽  
Feng Zhi Yu

Opportunistic Networks (ONs) are the newly emerging type of Delay Tolerant Network (DTN) systems that opportunistically exploit unpredicted contacts among nodes to share information. As with all DTN environments ONs experience frequent and large delays, and an end-to-end path may only exist for a brief and unpredictable time. In this paper, we employ optimal theory to propose a novel buffer management strategy named Optimal Buffer Scheduling Policy (OBSP) to optimize the sequence of message forwarding and message discarding. In OBSP, global optimization considering delivery ratio, transmission delay, and overhead is adopted to improve the overall performance of routing algorithms. The simulation results show that the OBSP is much better than the existing ones.


2011 ◽  
Vol 7 (1) ◽  
pp. 1 ◽  
Author(s):  
Bruno M. C. Silva ◽  
Vasco N. G. J. Soares ◽  
Joel J. P. C. Rodrigues

Vehicular delay-tolerant networks (VDTNs) are opportunistic networks that enable connectivity in challenged scenarios with unstable links where end-to-end communications may not exist. VDTN architecture handles non-real timeapplications using vehicles to relay messages between network nodes. To address the problem of intermittent connectivity, network nodes store messages on their buffers, carrying them through the network while waiting for transfer opportunities. The storage capacity of the nodes affects directly the network performance. Therefore, it is important to incorporate suitable network protocols using self-contained messages to improve communication that supports store-carry-and-forward operation procedures. Clearly, such procedures motivate content cachingand retrieval. This paper surveys the state-of-the art on intelligent caching and retrieval mechanisms focusing on ad-hoc and delay tolerant networks (DTN). These approaches can offer important insights for upcoming proposals on intelligent caching and retrieval mechanisms for VDTNs.


Author(s):  
Eranda Harshanath Jayatunga ◽  
Pasika Sashmal Ranaweera ◽  
Indika Anuradha Mendis Balapuwaduge

The internet of things (IoT) is paving a path for connecting a plethora of smart devices together that emerges from the novel 5G-based applications. This evident heterogeneity invites the integration of diverse technologies such as wireless sensor networks (WSNs), software-defined networks (SDNs), cognitive radio networks (CRNs), delay tolerant networks (DTNs), and opportunistic networks (oppnets). However, the security and privacy are prominent conundrums due to featured compatibility and interoperability aspects of evolving directives. Blockchain is the most nascent paradigm instituted to resolve the issues of security and privacy while retaining performance standards. In this chapter, advances of blockchain technology in aforesaid networks are investigated and presented as means to be followed as security practices for pragmatically realizing the concepts.


2011 ◽  
Vol 474-476 ◽  
pp. 1173-1178
Author(s):  
Pan Daru ◽  
Zhang Han

Wireless Multicast is one of the important problems with applications to opportunistic networks, such as delay-tolerant networks (DTNs), personal, pocket-switched networks (PSNs) etc. Network Coding has received many attentions because it improves potential network throughput and robustness by the way of combining multiple packets in the routers and reducing the transmissions. This paper combines network coding with opportunistic routing to improve the throughput of wireless multicast, where an Inter-coding and Intra-coding scheme is introduced to the traditional multicast routing algorithm (OR-DNC, Opportunistic Routing with Dual Network Coding). Compared with traditional multicast routing without coding and MORE-M, OR-DNC performs better in terms of throughput, transmission reduction and coding gain.


Sign in / Sign up

Export Citation Format

Share Document