The Climate System and Climate Change

2022 ◽  
pp. 13-50
Author(s):  
Lee Hannah
Author(s):  
Richard Passarelli ◽  
David Michel ◽  
William Durch

The Earth’s climate system is a global public good. Maintaining it is a collective action problem. This chapter looks at a quarter-century of efforts to understand and respond to the challenges posed by global climate change and why the collective political response, until very recently, has seemed to lag so far behind our scientific knowledge of the problem. The chapter tracks the efforts of the main global, intergovernmental process for negotiating both useful and politically acceptable responses to climate change, the UN Framework Convention on Climate Change, but also highlights efforts by scientific and environmental groups and, more recently, networks of sub-national governments—especially cities—and of businesses to redefine interests so as to meet the dangers of climate system disruption.


2015 ◽  
Vol 8 (7) ◽  
pp. 1943-1954 ◽  
Author(s):  
D. R. Feldman ◽  
W. D. Collins ◽  
J. L. Paige

Abstract. Top-of-atmosphere (TOA) spectrally resolved shortwave reflectances and long-wave radiances describe the response of the Earth's surface and atmosphere to feedback processes and human-induced forcings. In order to evaluate proposed long-duration spectral measurements, we have projected 21st Century changes from the Community Climate System Model (CCSM3.0) conducted for the Intergovernmental Panel on Climate Change (IPCC) A2 Emissions Scenario onto shortwave reflectance spectra from 300 to 2500 nm and long-wave radiance spectra from 2000 to 200 cm−1 at 8 nm and 1 cm−1 resolution, respectively. The radiative transfer calculations have been rigorously validated against published standards and produce complementary signals describing the climate system forcings and feedbacks. Additional demonstration experiments were performed with the Model for Interdisciplinary Research on Climate (MIROC5) and Hadley Centre Global Environment Model version 2 Earth System (HadGEM2-ES) models for the Representative Concentration Pathway 8.5 (RCP8.5) scenario. The calculations contain readily distinguishable signatures of low clouds, snow/ice, aerosols, temperature gradients, and water vapour distributions. The goal of this effort is to understand both how climate change alters reflected solar and emitted infrared spectra of the Earth and determine whether spectral measurements enhance our detection and attribution of climate change. This effort also presents a path forward to understand the characteristics of hyperspectral observational records needed to confront models and inline instrument simulation. Such simulation will enable a diverse set of comparisons between model results from coupled model intercomparisons and existing and proposed satellite instrument measurement systems.


2018 ◽  
Vol 4 (1/2) ◽  
pp. 19-36 ◽  
Author(s):  
Alex G. Libardoni ◽  
Chris E. Forest ◽  
Andrei P. Sokolov ◽  
Erwan Monier

Abstract. Historical time series of surface temperature and ocean heat content changes are commonly used metrics to diagnose climate change and estimate properties of the climate system. We show that recent trends, namely the slowing of surface temperature rise at the beginning of the 21st century and the acceleration of heat stored in the deep ocean, have a substantial impact on these estimates. Using the Massachusetts Institute of Technology Earth System Model (MESM), we vary three model parameters that influence the behavior of the climate system: effective climate sensitivity (ECS), the effective ocean diffusivity of heat anomalies by all mixing processes (Kv), and the net anthropogenic aerosol forcing scaling factor. Each model run is compared to observed changes in decadal mean surface temperature anomalies and the trend in global mean ocean heat content change to derive a joint probability distribution function for the model parameters. Marginal distributions for individual parameters are found by integrating over the other two parameters. To investigate how the inclusion of recent temperature changes affects our estimates, we systematically include additional data by choosing periods that end in 1990, 2000, and 2010. We find that estimates of ECS increase in response to rising global surface temperatures when data beyond 1990 are included, but due to the slowdown of surface temperature rise in the early 21st century, estimates when using data up to 2000 are greater than when data up to 2010 are used. We also show that estimates of Kv increase in response to the acceleration of heat stored in the ocean as data beyond 1990 are included. Further, we highlight how including spatial patterns of surface temperature change modifies the estimates. We show that including latitudinal structure in the climate change signal impacts properties with spatial dependence, namely the aerosol forcing pattern, more than properties defined for the global mean, climate sensitivity, and ocean diffusivity.


Author(s):  
Cynthia Rosenzweig ◽  
Daniel Hillel

The climate system envelops our planet, with swirling fluxes of mass, momentum, and energy through air, water, and land. Its processes are partly regular and partly chaotic. The regularity of diurnal and seasonal fluctuations in these processes is well understood. Recently, there has been significant progress in understanding some of the mechanisms that induce deviations from that regularity in many parts of the globe. These mechanisms include a set of combined oceanic–atmospheric phenomena with quasi-regular manifestations. The largest of these is centered in the Pacific Ocean and is known as the El Niño–Southern Oscillation. The term “oscillation” refers to a shifting pattern of atmospheric pressure gradients that has distinct manifestations in its alternating phases. In the Arctic and North Atlantic regions, the occurrence of somewhat analogous but less regular interactions known as the Arctic Oscillation and its offshoot, the North Atlantic Oscillation, are also being studied. These and other major oscillations influence climate patterns in many parts of the globe. Examples of other large-scale interactive ocean–atmosphere– land processes are the Pacific Decadal Oscillation, the Madden-Julian Oscillation, the Pacific/North American pattern, the Tropical Atlantic Variability, the West Pacific pattern, the Quasi-Biennial Oscillation, and the Indian Ocean Dipole. In this chapter we review the earth’s climate system in general, define climate variability, and describe the processes related to ENSO and the other major systems and their interactions. We then consider the possible connections of the major climate variability systems to anthropogenic global climate change. The climate system consists of a series of fluxes and transformations of energy (radiation, sensible and latent heat, and momentum), as well as transports and changes in the state of matter (air, water, solid matter, and biota) as conveyed and influenced by the atmosphere, the ocean, and the land masses. Acting like a giant engine, this dynamic system is driven by the infusion, transformation, and redistribution of energy.


Author(s):  
Henry Shue

We now know that anthropogenic emissions of greenhouse gases (GHGs) are interfering with the planet’s climate system in ways that are likely to lead to dangerous threats to human life (not to mention nonhuman life) and that are likely to compromise the fundamental well-being of people who live at a later time. We have not understood this for very long—for most of my life, for example, we were basically clueless about climate. Our recently acquired knowledge means that decisions about climate policy are no longer properly understood as decisions entirely about preferences of ours but also crucially about the vulnerabilities of others—not about the question “How much would we like to spend to slow climate change?” but about “How little are we in decency permitted to spend in light of the difficulties and the risks of difficulties to which we are likely otherwise to expose people, people already living and people yet to live?” For we now realize that the carbon-centered energy regime under which we live is modifying the human habitat, creating a more dangerous world for the living and for posterity. Our technologically primitive energy regime based on setting fire to fossil fuels is storing up, in the planet’s radically altering atmosphere, sources of added threat for people who are vulnerable to us and cannot protect themselves against the consequences of our decisions for the circumstances in which they will have to live—most notably, whichever people inherit the worn-and-torn planet we vacate. As we academics love to note, matters are, of course, complicated. Let’s look at a few of the complications, concentrating on some concerning risk. Mostly, we are talking about risks because, although we know strikingly much more about the planetary climate system than we did a generation ago, much is still unknown and unpredictable. I will offer three comments about risk. The third comment is the crucial one and makes a strong claim about a specific type of risk, with three distinctive features.


Author(s):  
Dale Jamieson ◽  
Marcello Di Paola

Climate change puts pressure on a distinction that is at the heart of liberal theory: that between the public and the private. Many of the GHG-emitting behaviors that contribute to the disruption of the climate system—such as using computers, taking hot showers, eating this or that, driving cars, investing here or there, and having children—are traditionally regarded as private. Yet today, through climate change, these apparently private behaviors can have very public consequences, however indirect, across spatial, temporal, and genetic boundaries. The chapter introduces the public/private distinction and discusses the various ways in which it has figured in liberal theory. It goes on to show how climate change threatens the viability of the distinction, both by intensifying old tensions and by bringing new pressures to bear. It then considers some options for relieving the pressure, none of which seems particularly promising by liberal lights.


Author(s):  
Victor Galaz

Climate change is increasingly being framed as a “climate crisis.” Such a crisis could be viewed both to unfold in the climate system, as well as to be induced by it in diverse areas of society. Following from current understandings of modern crises, it is clear that climate change indeed can be defined as a “crisis.” As the Intergovernmental Panel on Climate Change 1.5oC special report elaborates, the repercussions of a warming planet include increased food insecurity, increased frequency and intensity of severe droughts, extreme heat waves, the loss of coral reef ecosystems and associated marine species, and more. It is also important to note that a range of possible climate-induced crises (through, e.g., possible increased food insecurity and weather extremes) will not be distributed evenly, but will instead disproportionally affect already vulnerable social groups, communities, and countries in detrimental ways. The multifaceted dimensions of climate change allow for multiple interpretations and framings of “climate crisis,” thereby forcing us to acknowledge the deeply contextual nature of what is understood as a “crisis.” Climate change and its associated crises display a number of challenging properties that stem from its connections to basically all sectors in society, its propensity to induce and in itself embed nonlinear changes such as “tipping points” and cascading shocks, and its unique and challenging long-term temporal dimensions. The latter pose particularly difficult decision-making and institutional challenges because initial conditions (in this case, carbon dioxide emissions) do not result in immediate or proportional responses (say, global temperature anomalies), but instead play out through feedbacks among the climate system, oceans, the cryosphere, and changes in forest biomes, with some considerable delays in time. Additional challenges emerge from the fact that early warnings of pending so-called “catastrophic shifts” face numerous obstacles, and that early responses are undermined by a lack of knowledge, complex causality, and severe coordination challenges.


2020 ◽  
Author(s):  
David Stainforth ◽  
Raphael Calel ◽  
Sandra Chapman ◽  
Nicholas Watkins

<p>Integrated Assessment Models (IAMs) are widely used to evaluate the economic costs of climate change, the social cost of carbon and the value of mitigation policies. These IAMs include simple energy balance models (EBMs) to represent the physical climate system and to calculate the timeseries of global mean temperature in response to changing radiative forcing[1]. The EBMs are deterministic in nature which leads to smoothly varying GMT trajectories so for simple monotonically increasing forcing scenarios (e.g. representative concentration pathways (RCPs) 8.5, 6.0 and 4.5) the GMT trajectories are also monotonically increasing. By contrast real world, and global-climate-model-derived, timeseries show substantial inter-annual and inter-decadal variability. Here we present an analysis of the implications of this intrinsic variability for the economic consequences of climate change.</p><p>We use a simple stochastic EBM to generate large ensembles of GMT trajectories under each of the RCP forcing scenarios. The damages implied by each trajectory are calculated using the Weitzman damage function. This provides a conditional estimate of the unavoidable uncertainty in implied damages. It turns out to be large and positively skewed due to the shape of the damage function. Under RCP2.6 we calculate a 5-95% range of -30% to +52% of the deterministic value; -13% to +16% under RCP 8.5. The risk premia associated with such unavoidable uncertainty are also significant. Under our economic assumptions a social planner would be willing to pay 32 trillion dollars to avoid just the intrinsic uncertainty in RCP8.5. This figure rises further when allowance is made for epistemic uncertainty in relation to climate sensitivity. We conclude that appropriate representation of stochastic variability in the climate system is important to include in future economic assessments of climate change.</p><p><br>[1] Calel, R. and Stainforth D.A., “On the Physics of Three Integrated Assessment Models”, Bulletin of the American Meteorological Society, 2017.</p><p> </p>


Sign in / Sign up

Export Citation Format

Share Document