DIFFERENTIAL SYNTHESIS OF RABBIT AORTA CONTRACTING SUBSTANCE (THROMBOXANE A2) BY HUMAN LUNG VERSUS SKIN FIBROBLASTS IN TISSUE CULTURE

Author(s):  
J.M. Bailey ◽  
R.W. Bryant ◽  
B. Brynelson ◽  
S. Feinmark
1975 ◽  
pp. 267-297 ◽  
Author(s):  
Russell P. Sherwin ◽  
Arnis Richters

1981 ◽  
Author(s):  
R McKenna ◽  
T Ahmad ◽  
A Prancan ◽  
D Simon ◽  
H Frischer

We have previously shown that BCNU inhibits human platelet glutathione reductase (GSSG-R) prior to inhibiting platelet function; since thromboxane production is important in platelet function, we evaluated the effect of BCNU induced inhibition of GSSG-R on platelet thromboxane production.Control platelet GSSG-R activity was 0.091 ]jmoles NAD(P)H oxidized min-1lmg-1 protein at 37°C (±0.015 S.D.; n=9); inhibition was detectable at 10-7M% BCNU (70% of control) with a >90% inhibition at and above 10-5M BCNU. Platelet aggregation in response to 1.5×10-3M Arachidonic acid (AA), 10 μM epinephrine, 6 μg/ml equine collagen and 3 μM ADP were inhibited at 10-5M BCNU and abolished at 10-4 BCNU.BCNU (10-3M) did not affect the increase in oxygen consumption induced by AA. Using the rabbit aorta superfusion bioassay for thromboxane A2 (TXA2), threshold concentrations of AA in 10-5 and 10-4 BCNU platelets resulted in an increased measure of aortic tension 13.5 ± 9.4 mm S.D. (n=6) and 23.2 ± 9.5 mm respectively, compared with control values of 4.5 ± 2.4. Acetylsalicylic acid (5 × l0-4M) inhibited the contraction: 1.7 ± 1.1 (n=5). The conversion of 14C AA to thromboxane B2 (TXB2) and PGE2, as measured by radio TLC, was not decreased in BCNU treated platelets. There is a significant increase in TXB2 (p<0.05;n=4) and in the ratio of TXB2:PGE2 in platelets treated with 10-4M BCNU and 10-3M imidazole when compared to platelets treated with imidazole alone.In conclusion BCNU induced inhibition of platelet GSSG-R and platelet function occurs despite preservation of thromboxane production


1979 ◽  
Author(s):  
H.Y.K. Chuang ◽  
S.F. Mohammad ◽  
R.G. Mason

Studies on the effect of heparin on platelet functions have resulted in conflicting observations: heparin has been reported to cause aggregation of platelets, potentiate aggregation induced by various aggregating agents, or cause inhibition of aggregation. Using paritally purified heparin (beef lung or porcine mucosa) we observed that addition of heparin to citrated platelet rich plasma(C-PRP)potentiated the aggregation of platelets induced by ADP, epinephrine, or arachidonic acid. Presence of heparin in C-PRP results in complete inhibition of thrombin induced effects and partial inhibition of platelet aggregation induced by collagen. Presence of heparin in C-PRP also resulted in release of significantly higher concentrations of 14C-serotonin when platelets were challenged by appropriate aggregating agents. Those concentrations of heparin that resulted in potentiation of aggregation had no appreciable effect on c-AiMP or c-GMP levels of platelets. However, the presence of heparin results in a significant elevation of thromboxane A2 as determined by contraction of rabbit aorta or after conversion to thromboxane B2 by thin layer chromatography. These observations are of interest since increased production of thromboxane A2 in the presence of heparin may explain in part, the potentiation of platelet aggregation in vitro or thrombocytopenia observed frequently in patients receiving heparin intravenously Supported in part by grants HL22583 & 20679 from NHLBI of NIH.


Nature ◽  
1964 ◽  
Vol 202 (4933) ◽  
pp. 672-674 ◽  
Author(s):  
R. G. SPECTOR ◽  
D. E. MUTTON ◽  
J. L. HAMERTON

2009 ◽  
Vol 53 (9) ◽  
pp. 3935-3941 ◽  
Author(s):  
Renee W. Y. Chan ◽  
Michael C. W. Chan ◽  
Adam C. N. Wong ◽  
Rositsa Karamanska ◽  
Anne Dell ◽  
...  

ABSTRACT DAS181 is a novel candidate therapeutic agent against influenza virus which functions via the mechanism of removing the virus receptor, sialic acid (Sia), from the adjacent glycan structures. DAS181 and its analogues have previously been shown to be potently active against multiple strains of seasonal and avian influenza virus strains in several experimental models, including cell lines, mice, and ferrets. Here we demonstrate that DAS181 treatment leads to desialylation of both α2-6-linked and α2-3-linked Sia in ex vivo human lung tissue culture and primary pneumocytes. DAS181 treatment also effectively protects human lung tissue and pneumocytes against the highly pathogenic avian influenza virus H5N1 (A/Vietnam/3046/2004). Two doses of DAS181 treatment given 12 h apart were sufficient to block H5N1 infection in the ex vivo lung tissue culture. These findings support the potential value of DAS181 as a broad-spectrum therapeutic agent against influenza viruses, especially H5N1.


Author(s):  
Leonard H. Go ◽  
Gokhan Mutlu ◽  
GR Scott Budinger ◽  
Anna Lam ◽  
Stephanie Rivera ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document