The Role of Body Size in Complex Food Webs

Author(s):  
Ute Jacob ◽  
Aaron Thierry ◽  
Ulrich Brose ◽  
Wolf E. Arntz ◽  
Sofia Berg ◽  
...  
Keyword(s):  
2015 ◽  
Vol 25 (10) ◽  
pp. 753-759 ◽  
Author(s):  
Katerina Maximova ◽  
Mohammad K.A. Khan ◽  
S. Bryn Austin ◽  
Sara F.L. Kirk ◽  
Paul J. Veugelers
Keyword(s):  

2002 ◽  
Vol 59 (10) ◽  
pp. 1606-1615 ◽  
Author(s):  
Martin Kainz ◽  
Marc Lucotte ◽  
Christopher C Parrish

Pathways of methyl mercury (MeHg) accumulation in zooplankton include ingestion of organic matter (OM). We analyzed fatty acid (FA) biomarkers in zooplankton to (i) investigate the effect of allochthonous and autochthonous OM ingestion on MeHg concentrations ([MeHg]) in zooplankton and (ii) examine how algal and bacterial food sources affect MeHg bioaccumulation. We partitioned bulk zooplankton samples (i.e., >500, 202, 100, and 53 μm) from Lake Lusignan (Québec) and measured [MeHg] and [FA] in each fraction. [MeHg] increased with increasing body size and was significantly higher in pelagic than in littoral macrozooplankton (>500 μm). The amount of the ingested terrestrial FA biomarker 24:0 indicated that less than 1% of the total FA in zooplankton was derived from allochthonous sources. More than 60% of the ingested FA originated from algal biomarkers and <10% from bacterial biomarkers. Relative amounts of algal-derived essential FA and bacterial FA were not associated with [MeHg] in any size fraction. In pelagic zones, the amount of MeHg in zooplankton related positively to the number of large organisms such as Calanoid copepods and Daphnia. We propose that the accumulation of MeHg in lacustrine zooplankton depends on the zooplankton habitat rather than on the quality of ingested food.


Body Image ◽  
2006 ◽  
Vol 3 (2) ◽  
pp. 163-171 ◽  
Author(s):  
Marita P. McCabe ◽  
Lina A. Ricciardelli ◽  
Geeta Sitaram ◽  
Katherine Mikhail

2010 ◽  
Vol 23 (2) ◽  
pp. 190-200 ◽  
Author(s):  
Marta Krenz-Niedbała ◽  
Elżbieta A. Puch ◽  
Krzysztof Kościński

Evolution ◽  
1983 ◽  
Vol 37 (5) ◽  
pp. 1062 ◽  
Author(s):  
Ted J. Case ◽  
John Faaborg ◽  
Ron Sidell

2016 ◽  
Vol 6 (5) ◽  
pp. 1447-1456 ◽  
Author(s):  
Luiz Carlos S. Lopez ◽  
Marcos S. L. Figueiredo ◽  
Maria Paula de Aguiar Fracasso ◽  
Daniel Oliveira Mesquita ◽  
Ulisses Umbelino Anjos ◽  
...  

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7579 ◽  
Author(s):  
Sosuke Fujita ◽  
Erina Kuranaga ◽  
Yu-ichiro Nakajima

Jellyfish have existed on the earth for around 600 million years and have evolved in response to environmental changes. Hydrozoan jellyfish, members of phylum Cnidaria, exist in multiple life stages, including planula larvae, vegetatively-propagating polyps, and sexually-reproducing medusae. Although free-swimming medusae display complex morphology and exhibit increase in body size and regenerative ability, their underlying cellular mechanisms are poorly understood. Here, we investigate the roles of cell proliferation in body-size growth, appendage morphogenesis, and regeneration using Cladonema pacificum as a hydrozoan jellyfish model. By examining the distribution of S phase cells and mitotic cells, we revealed spatially distinct proliferating cell populations in medusae, uniform cell proliferation in the umbrella, and clustered cell proliferation in tentacles. Blocking cell proliferation by hydroxyurea caused inhibition of body size growth and defects in tentacle branching, nematocyte differentiation, and regeneration. Local cell proliferation in tentacle bulbs is observed in medusae of two other hydrozoan species, Cytaeis uchidae and Rathkea octopunctata, indicating that it may be a conserved feature among hydrozoan jellyfish. Altogether, our results suggest that hydrozoan medusae possess actively proliferating cells and provide experimental evidence regarding the role of cell proliferation in body-size control, tentacle morphogenesis, and regeneration.


2007 ◽  
Vol 340 ◽  
pp. 55-62 ◽  
Author(s):  
K Kon ◽  
H Kurokura ◽  
K Hayashizaki

2021 ◽  
Author(s):  
Glenn A. Hyndes ◽  
Emma Berdan ◽  
Cristian Duarte ◽  
Jenifer E. Dugan ◽  
Kyle A. Emery ◽  
...  

Sandy beaches are iconic interfaces that functionally link the ocean with the land by the flow of marine organic matter. These cross-ecosystem fluxes often comprise uprooted seagrass and dislodged macroalgae that can form substantial accumulations of detritus, termed ‘wrack’, on sandy beaches. In addition, the tissue of the carcasses of marine animals that regularly wash up on beaches form a rich food source (‘carrion’) for a diversity of scavenging animals. Here, we provide a global review of how wrack and carrion provide spatial subsidies that shape the structure and functioning of sandy beach ecosystems (sandy beaches and adjacent surf zones), which typically have little in situ primary production. We also examime the spatial scaling of the influence of these processes across the broader seascape and landscape, and identify key gaps in our knowledge to guide future research directions and priorities. Globally, large quantities of detrital kelp and seagrass can flow into sandy beach ecosystems, where microbial decomposers and animals remineralise and consume the imported organic matter. The supply and retention of wrack are influenced by the oceanographic processes that transport it, the geomorphology and landscape context of the recipient beaches, and the condition, life history and morphological characteristics of the taxa that are the ultimate source of wrack. When retained in beach ecosystems, wrack often creates hotspots of microbial metabolism, secondary productivity, biodiversity, and nutrient remineralization. Nutrients are produced during wrack break-down, and these can return to coastal waters in surface flows (swash) and the aquifier discharging into the subtidal surf. Beach-cast kelp often plays a key trophic role, being an abundant and preferred food source for mobile, semi-aquatic invertebrates that channel imported algal matter to predatory invertebrates, fish, and birds. The role of beach-cast marine carrion is likely to be underestimated, as it can be consumed rapidly by highly mobile scavengers (e.g. foxes, coyotes, raptors, vultures). These consumers become important vectors in transferring marine productivity inland, thereby linking marine and terrestrial ecosystems. Whilst deposits of organic matter on sandy beach ecosystems underpin a range of ecosystem functions and services, these can be at variance with aesthetic perceptions resulting in widespread activities, such ‘beach cleaning and grooming’. This practice diminishes the energetic base of food webs, intertidal fauna, and biodiversity. Global declines in seagrass beds and kelp forests (linked to global warming) are predicted to cause substantial reductions in the amounts of marine organic matter reaching many beach ecosystems, likely causing flow-on effects on food webs and biodiversity. Similarly, future sea-level rise and stormier seas are likely to profoundly alter the physical attributes of beaches, which in turn can change the rates at which beaches retain and process the influxes of wrack and animal carcasses. Conservation of the multi-faceted ecosystem services that sandy beaches provide will increasingly need to encompass a greater societal appreciation and the safeguarding of ecological functions reliant on beach-cast organic matter on innumerable ocean shores worldwide.


Sign in / Sign up

Export Citation Format

Share Document