Experimental and Numerical Study of the Geometrical and Hydraulic Characteristics of a Single Rock Fracture during Shear

Author(s):  
Xiangbin Xiong ◽  
Bo Li ◽  
Yujing Jiang ◽  
Tomofumi Koyama ◽  
Chuhan Zhang
2008 ◽  
Vol 124 (2) ◽  
pp. 129-136 ◽  
Author(s):  
Yujing JIANG ◽  
Tomofumi KOYAMA ◽  
Bo LI ◽  
Yusuke TASAKU ◽  
Ryousuke SAHO ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-22
Author(s):  
Zheming Zhu ◽  
Weiting Gao ◽  
Duanying Wan ◽  
Meng Wang ◽  
Yun Shu

To study the characteristics of rock fracture in deep underground under blast loads, some numerical models were established in AUTODYN code. Weibull distribution was used to characterize the inhomogeneity of rock, and a linear equation of state was applied to describe the relation of pressure and volume of granite elements. A new stress initialization method based on explicit dynamic calculation was developed to get an accurate stress distribution near the borehole. Two types of in situ stress conditions were considered. The effect of heterogeneous characteristics of material on blast-induced granite fracture was investigated. The difference between 2D models and 3D models was discussed. Based on the numerical results, it can be concluded that the increase of the magnitude of initial pressure can change the mechanism of shear failure near the borehole and suppress radial cracks propagation. When initial lateral pressure is invariable, with initial vertical pressure rising, radial cracks along the acting direction of vertical pressure will be promoted, and radial cracks in other directions will be prevented. Heterogeneous characteristics of material have an obvious influence on the shear failure zones around the borehole.


Author(s):  
Wenqi Ding ◽  
Dong Zhou ◽  
Xiaoqing Chen ◽  
Chao Duan ◽  
Qingzhao Zhang

Grouting reinforcement was used to improve rock strength and avoid seepage in rock engineering. A self-developed visualised test platform was developed and the influences of different fracture openness on grouting diffusion modes were revealed; the Bingham rheological model was imported to simulate the grouting diffusion process in a single plate fracture, the spatio-temporal distribution of the velocity field under different obstructions was determined using the finite element method. The results indicate that: 1) The grout diffuses faster with the increase of fracture openness, while a stagnation effect of the grouting diffusion velocity behind the obstruction occurs. 2) Due to obstructions, the grouting diffusion process can be divided into four stages: circular diffusion, flat diffusion, vortex diffusion, and butterfly diffusion. 3) The grouting diffusion area is divided into a fully-reinforced zone and a semi-reinforced zone, and the area of the latter increases with the fracture openness, while being little affected by the size of any obstruction. 4) Furthermore, some new grouting diffusion laws were revealed considering the asymmetrical arrangement of obstructions. The results presented in this work will be helpful for describing and predicting the grouting process in fracture networks.


1994 ◽  
Vol 353 ◽  
Author(s):  
Yoko Fujikawa ◽  
M. Fukui

AbstractThe effect of nonlinear Freundlich sorption isotherm on the transport of sorptive solute in a system of fracture and porous matrix was investigated through numerical simulation. To solve a set of partial differential equations of solute transport with nonlinear term, use of the Laplace transform Galerkin (LTG) technique was investigated. It was shown that the LTG method could be applied successfully to solve quasi-linearized transport equation. Sensitivity analysis showed that nonlinear sorption in porous matrix with order less than 1 increased the skewness of the breakthrough curve. The fitting of experimental effluent data using a transport model with nonlinear isotherms was also conducted.


2012 ◽  
Vol 256-259 ◽  
pp. 2519-2522 ◽  
Author(s):  
Zhi Yong Dong ◽  
Qi Qi Chen ◽  
Yong Gang Yang ◽  
Bin Shi

Hydraulic characteristics of orifice plates with multiple triangular holes in hydrodynamic cavitation reactor were experimentally investigated by use of three dimensional particle image velocimetry (PIV), high speed photography, electronic multi-pressure scanivalve and pressure data acquisition system, and numerically simulated by CFD software Flow 3D in this paper. Effects of number, arrangement and ratio of holes on hydraulic characteristics of the orifice plates were considered. Effects of arrangement and ratio of holes and flow velocity ahead of plate on cavitation number and velocity profile were compared. Distribution of turbulent kinetic energy and similarity of velocity profile were analyzed. And characteristics of cavitating flow downstream of the orifice plate were photographically observed by high speed camera. Also, a comparison with flow characteristics of orifice plate with hybrid holes (circle, square and triangle) was made.


2012 ◽  
Vol 16 (2) ◽  
pp. 265-272 ◽  
Author(s):  
Seojun Kim ◽  
Kwonkyu Yu ◽  
Byungman Yoon ◽  
Yoonsung Lim

Sign in / Sign up

Export Citation Format

Share Document