single rock fracture
Recently Published Documents


TOTAL DOCUMENTS

34
(FIVE YEARS 8)

H-INDEX

7
(FIVE YEARS 1)

Author(s):  
Wenqi Ding ◽  
Dong Zhou ◽  
Xiaoqing Chen ◽  
Chao Duan ◽  
Qingzhao Zhang

Grouting reinforcement was used to improve rock strength and avoid seepage in rock engineering. A self-developed visualised test platform was developed and the influences of different fracture openness on grouting diffusion modes were revealed; the Bingham rheological model was imported to simulate the grouting diffusion process in a single plate fracture, the spatio-temporal distribution of the velocity field under different obstructions was determined using the finite element method. The results indicate that: 1) The grout diffuses faster with the increase of fracture openness, while a stagnation effect of the grouting diffusion velocity behind the obstruction occurs. 2) Due to obstructions, the grouting diffusion process can be divided into four stages: circular diffusion, flat diffusion, vortex diffusion, and butterfly diffusion. 3) The grouting diffusion area is divided into a fully-reinforced zone and a semi-reinforced zone, and the area of the latter increases with the fracture openness, while being little affected by the size of any obstruction. 4) Furthermore, some new grouting diffusion laws were revealed considering the asymmetrical arrangement of obstructions. The results presented in this work will be helpful for describing and predicting the grouting process in fracture networks.


Geothermics ◽  
2021 ◽  
Vol 89 ◽  
pp. 101989
Author(s):  
Sascha Frank ◽  
Thomas Heinze ◽  
Stefan Pollak ◽  
Stefan Wohnlich

2020 ◽  
Vol 589 ◽  
pp. 125162
Author(s):  
Guan Rong ◽  
Jie Tan ◽  
Hongbin Zhan ◽  
Renhui He ◽  
Ziyang Zhang

Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Jianli Shao ◽  
Qi Zhang ◽  
Wenbin Sun ◽  
Zaiyong Wang ◽  
Xianxiang Zhu

The influence of rock seepage must be considered in geotechnical engineering, and understanding the fluid flow in rock fractures is of great concern in the seepage effect investigation. This study is aimed at developing a model for inversion of rock fracture domains based on digital images and further study of non-Darcy flow. The visualization model of single rock fracture domain is realized by digital images, which is further used in flow numerical simulation. We further discuss the influence of fracture domain geometry on non-Darcy flow. The results show that it is feasible to study non-Darcy flow in rock fracture domains by inversion based on digital images. In addition, as the joint roughness coefficient (JRC) increases or the fracture aperture decreases, distortion of the fluid flow path increases, and the pressure gradient loss caused by the inertial force increases. Both coefficients of the Forchheimer equation decrease with increasing fracture aperture and increase with increasing JRC. Meanwhile, the critical Reynolds number tends to decrease when JRC increases or the fracture aperture decreases, indicating that the fluid tends to non-Darcy flow. This work provides a reference for the study of non-Darcy flow through rock fractures.


2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Baohua Guo ◽  
Chenlin Wang ◽  
Long Wang ◽  
Yan Chen ◽  
Tan Cheng

The property of water flow through a single rock fracture is the base of describing the seepage characteristics of jointed rock mass. Five artificial tensile fractures of coarse-grained cylinder marble samples were made at about the midpoint of the long axis by using a self-made splitting mold. The upper and lower surfaces of the tensile fractures were scanned by a 3D laser scanner (OKIO) to obtain their 3D coordinates. Then, the Geomagic Studio Software and rock surface topography scan test software were used to obtain peak density values of each single fracture surface. To study the seepage characteristics of open fracture, 4 rectangular plastic spacers with the size of about 3 mm × 2 mm × 0.2 mm were put into the fracture when water flowed through the single rough fracture tests were conducted under different normal stresses using the self-developed radial flow system. According to the testing data, the relationships between the seepage characteristics of single rough rock fracture and the peak density of fracture surface were studied. It is discovered that the 3D fracture morphology had great influences on the seepage characteristics of the single rock fracture. A modified cubic law was put forward to present the relationship between the seepage characteristics of a rough rock fracture and peak density of two fracture surfaces. Comparison between the modified cubic law and the experimental data showed a relatively good agreement.


2018 ◽  
Vol 124 (1) ◽  
pp. 1-30 ◽  
Author(s):  
Amir A. Mofakham ◽  
Matthew Stadelman ◽  
Goodarz Ahmadi ◽  
Kevin T. Shanley ◽  
Dustin Crandall

SPE Journal ◽  
2018 ◽  
Vol 23 (03) ◽  
pp. 788-802 ◽  
Author(s):  
B. I. AlQuaimi ◽  
W. R. Rossen

Summary The displacement of a nonwetting phase by a wetting phase is characterized by the capillary number. Different forms of capillary number have been used in the literature for flow in porous media. A capillary number for a single rock fracture has been defined in the literature, using the mean aperture to characterize the trapping and mobilization in a fracture. We propose a new capillary-number definition for fractures that incorporates geometrical characterization of the fracture, dependent on the force balance on a trapped ganglion. The new definition is validated with laboratory experiments using five distinctive model fractures. The model fractures are made of glass plates, with a wide variety of hydraulic apertures, degrees of roughness, and correlation lengths of the roughness. The fracture surfaces were characterized in detail and statistically analyzed. The aperture distribution of each model fracture was represented as a 2D network of pore bodies connected by throats. The hydraulic aperture of each model fracture was measured experimentally. Capillary desaturation curves (CDCs) were generated experimentally using water/air in forced imbibition. The transparent nature of the system permits us to determine the residual air saturation as a function of pressure gradient from the captured images. The residual nonwetting saturation/capillary-number relationship obtained from different fractures varying in aperture and roughness can be represented approximately by a single curve in terms of the new definition of the capillary number. They do not fit a single trend using the conventional definition of the capillary number.


Sign in / Sign up

Export Citation Format

Share Document