The Multiple Roles which Cell Division can Play in the Localization of Developmental Potential

Author(s):  
Gary Freeman
2017 ◽  
Vol 40 (4) ◽  
pp. 367-380.e7 ◽  
Author(s):  
Derek H. Janssens ◽  
Danielle C. Hamm ◽  
Lucas Anhezini ◽  
Qi Xiao ◽  
Karsten H. Siller ◽  
...  

2004 ◽  
Vol 166 (7) ◽  
pp. 949-955 ◽  
Author(s):  
Oliver J. Gruss ◽  
Isabelle Vernos

Recent work has provided new insights into the mechanism of spindle assembly. Growing evidence supports a model in which the small GTPase Ran plays a central role in this process. Here, we examine the evidence for the existence of a RanGTP gradient around mitotic chromosomes and some controversial data on the role that chromosomes play in spindle assembly. We review the current knowledge on the Ran downstream targets for spindle assembly and we focus on the multiple roles of TPX2, one of the targets of RanGTP during cell division.


2021 ◽  
Author(s):  
Giacomo Gattoni ◽  
Toby GR Andrews ◽  
Elia Benito Gutierrez

The central nervous system of the cephalochordate amphioxus consists of a dorsal neural tube with an anterior brain. Two decades of gene expression analyses in developing amphioxus embryos have shown that despite the lack of overt segmentation the amphioxus neural tube is highly regionalized at the molecular level. However, little is known about the mechanisms that generate such precise regionalization. Proliferation is a key driver of pattern formation and cell type diversification, but in amphioxus it has never been studied in detail nor in the specific context of neurogenesis. Here, we describe the dynamics of cell division during the formation of the central nervous system in amphioxus embryos and its contributions to the regionalization of the neural axis. We show that after gastrulation, proliferation pauses to become spatially restricted to the anterior and posterior ends of the neural tube at neurula stages. Only at the onset of larval life, proliferation resumes in the central part of the nervous system. By marking specific populations and inhibiting cell division during neurulation, we demonstrate that proliferation in the anterior cerebral vesicle is required to establish the full cell type repertoire of the frontal eye complex and the putative hypothalamic region of the amphioxus brain, while posterior proliferating progenitors, which were found here to derive from the dorsal lip of the blastopore, contribute to elongate the caudal floor plate. Between these proliferative domains, we find trunk nervous system differentiation is independent from cell division, which decreases during neurulation and resumes at the early larval stage. Taken together, our results highlight multiple roles for proliferation in shaping the amphioxus nervous system.


2008 ◽  
Vol 36 (3) ◽  
pp. 431-435 ◽  
Author(s):  
Mary Kate Bonner ◽  
Ahna R. Skop

Cell division is the most fundamental process in the development of all living organisms. The generation of cell diversity throughout development, the multiplication of cells during wound repair and the maintenance of stem cells in several tissues and organs all rely on proper progress through cell division. Historically, biochemical studies of cell division proved to be difficult, since mitosis is a moving target. The rapid and dynamic nature of mitosis means necessary proteins often exist in multiple isoforms and some for only brief moments during a particular stage in the cell cycle. The advent of proteomics and the introduction of stage-specific inhibitors have enabled the field to identify numerous factors required at distinct steps in the cell cycle. One such factor identified in many of these screens was the highly conserved protein dynamin. Dynamin, long known for its role in endocytosis, is also necessary for co-ordinating actin assembly at membranes. Our knowledge of its precise cell cycle function and upstream/downstream targets, however, is unclear. Our review will describe current knowledge regarding the impacts of several cell division screens and the multiple roles that dynamin may play during mitosis.


1999 ◽  
Vol 10 (8) ◽  
pp. 2771-2785 ◽  
Author(s):  
Daniel P. Mulvihill ◽  
Janni Petersen ◽  
Hiroyuki Ohkura ◽  
David M. Glover ◽  
Iain M. Hagan

Polo kinases execute multiple roles during cell division. The fission yeast polo related kinase Plo1 is required to assemble the mitotic spindle, the prophase actin ring that predicts the site for cytokinesis and for septation after the completion of mitosis ( Ohkuraet al., 1995 ; Bahler et al., 1998 ). We show that Plo1 associates with the mitotic but not interphase spindle pole body (SPB). SPB association of Plo1 is the earliest fission yeast mitotic event recorded to date. SPB association is strong from mitotic commitment to early anaphase B, after which the Plo1 signal becomes very weak and finally disappears upon spindle breakdown. SPB association of Plo1 requires mitosis-promoting factor (MPF) activity, whereas its disassociation requires the activity of the anaphase-promoting complex. The stf1.1 mutation bypasses the usual requirement for the MPF activator Cdc25 ( Hudson et al., 1990 ). Significantly, Plo1 associates inappropriately with the interphase SPB of stf1.1 cells. These data are consistent with the emerging theme from many systems that polo kinases participate in the regulation of MPF to determine the timing of commitment to mitosis and may indicate that pole association is a key aspect of Plo1 function. Plo1 does not associate with the SPB when septation is inappropriately driven by deregulation of the Spg1 pathway and remains SPB associated if septation occurs in the presence of a spindle. Thus, neither Plo1 recruitment to nor its departure from the SPB are required for septation; however, overexpression ofplo1+activates the Spg1 pathway and causes transient Cdc7 recruitment to the SPB and multiple rounds of septation.


2021 ◽  
Vol 22 (12) ◽  
pp. 6420
Author(s):  
Himanshu Pandey ◽  
Mary Popov ◽  
Alina Goldstein-Levitin ◽  
Larisa Gheber

Bipolar kinesin-5 motor proteins perform multiple intracellular functions, mainly during mitotic cell division. Their specialized structural characteristics enable these motors to perform their essential functions by crosslinking and sliding apart antiparallel microtubules (MTs). In this review, we discuss the specialized structural features of kinesin-5 motors, and the mechanisms by which these features relate to kinesin-5 functions and motile properties. In addition, we discuss the multiple roles of the kinesin-5 motors in dividing as well as in non-dividing cells, and examine their roles in pathogenetic conditions. We describe the recently discovered bidirectional motility in fungi kinesin-5 motors, and discuss its possible physiological relevance. Finally, we also focus on the multiple mechanisms of regulation of these unique motor proteins.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Lovorka Stojic ◽  
Aaron T. L. Lun ◽  
Patrice Mascalchi ◽  
Christina Ernst ◽  
Aisling M. Redmond ◽  
...  

EMBO Reports ◽  
2018 ◽  
Vol 19 (9) ◽  
Author(s):  
Arvid Herrmann ◽  
Pantelis Livanos ◽  
Elisabeth Lipka ◽  
Astrid Gadeyne ◽  
Marie‐Theres Hauser ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document