Floral vegetables: Fresh-cut artichokes

Author(s):  
Maria Luisa Amodio ◽  
Michele la Zazzera ◽  
Giancarlo Colelli
Keyword(s):  
2011 ◽  
Vol 40 (8) ◽  
pp. 1141-1149 ◽  
Author(s):  
Su-Jin Kim ◽  
Shih-Hui Sun ◽  
Gi-Chang Kim ◽  
Haeng-Ran Kim ◽  
Ki-Sun Yoon

HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 457b-457 ◽  
Author(s):  
Arunya Limbanyen ◽  
Jeffrey K. Brecht ◽  
Steven A. Sargent ◽  
Jerry A. Bartz

Preparation and handling procedures for fresh-cut mango slices were developed using `Tommy Atkins', `Haden', and `Palmer' mangoes. Fruit with yellow flesh color (no green color remaining) were optimum maturity for fresh-cut in terms of maintenance of acceptable appearance, texture, and taste; riper fruit developed flesh breakdown and more browning. Postharvest life of fresh-cut mango at 5 °C was 8 to 10 d with no evidence of chilling injury and was limited by flesh browning and loss of firmness. Respiration rates ranged from 32 to 40 mg CO2/kg per hr and ethylene production was typically ≤0.1 μl·kg–1·hr–1. The SSC changed little during storage, while pH varied from 3.5 to 4.8 and TA typically declined by 30% to 40%. Peeling to a depth of at least 2 mm and trimming flesh near the stem scar was necessary to minimize browning. Imported fruit that had been heat-treated for insect quarantine showed more severe browning than Florida fruit that had not been heat-treated. Preparation in aseptic conditions and dipping fruit in a 100 ppm NaOCl solution at pH 7 before and after peeling protected against decay during storage but dipping in chlorine after slicing without removal of excess liquid resulted in flesh translucency and breakdown. Dipping in 1% CaCl2 solution had no effect on flesh firmness (Instron) or browning. Storage in an unvented plastic clamshell container, which developed an atmosphere of 2.25% CO2 plus 19% O2, did not improve shelf life, but a MA of 10% CO2 plus 10% O2 was subjectively judged to slow browning and softening and resulted in no off flavor compared to air storage.


2015 ◽  
Vol 11 (4) ◽  
pp. 282-291 ◽  
Author(s):  
Pandian Arjun ◽  
Deepak Semwal ◽  
Ruchi Badoni Semwal ◽  
Satyendra Prasad Mishra ◽  
Anita Blessy Vijayan ◽  
...  

2007 ◽  
Vol 3 (6) ◽  
pp. 1-7 ◽  
Author(s):  
Qiang He ◽  
Yaguang Luo
Keyword(s):  

2007 ◽  
Vol 3 (2) ◽  
pp. 1-9 ◽  
Author(s):  
Wenzhong Hu and Yueming Jiang

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiaohui Liu ◽  
Aidong Zhang ◽  
Jing Shang ◽  
Zongwen Zhu ◽  
Ye Li ◽  
...  

AbstractEnzymatic browning is one of the crucial problems compromising the flavor and texture of fresh-cut fruit and vegetables. In this study, an untargeted metabolomics approach based on liquid chromatography-mass spectrometry (LC–MS) was used to explore the browning mechanism in fresh-cut eggplant. Metabolomics studies showed that with the increase of fresh-cut time, the contents of 946 metabolites changed dynamically. The metabolites having the same trend share common metabolic pathways. As an important browning substrate, the content of chlorogenic acid increased significantly, suggesting that may be more important to fresh-cut eggplant browning; all 119 common differential metabolites in 5 min/CK and 3 min/CK contrastive groups were mapped onto 31 KEGG pathways including phenylpropanol metabolism, glutathione metabolism pathway, et al. In physiological experiments, results showed that the Phenylpropanoid-Metabolism-Related enzymes (PAL, C4H, 4CL) were changed after fresh-cut treatment, the activities of three enzymes increased first and then decreased, and reached the maximum value at 5 min, indicating the accumulation of phenolic substances. At the same time, ROS were accumulated when plant tissue damaged by cutting, the activities of related antioxidant enzymes (SOD, APX and CAT) changed dynamically after oxidative damage. SOD and APX content increased significantly and reached the maximum value at 10 min after cutting, and then showed a downward trend. However, CAT activity increased sharply and reached the maximum value within 3 min after cutting, then maintained the same activity, and showed a downward trend after 30 min. These data fully demonstrated that the activities of browning related enzymes and gene expression increased with the prolonging of fresh cutting time. We explained the browning mechanism of fresh-cut eggplant by combining metabolomics and physiology, which may lay the foundation for better understanding the mechanism of browning during the fruits and vegetables during processing.


Sign in / Sign up

Export Citation Format

Share Document