Application of complex in vitro models (CIVMs) in drug discovery for safety testing and disease modeling

Author(s):  
Claire G. Jeong ◽  
Gianni Dal Negro ◽  
Spiro Getsios ◽  
Jason E. Ekert
Author(s):  
Scott D. Collins ◽  
◽  
Gloria Yuen ◽  
Thomas Tu ◽  
Magdalena A. Budzinska ◽  
...  

2021 ◽  
Vol 22 (3) ◽  
pp. 1203
Author(s):  
Lu Qian ◽  
Julia TCW

A high-throughput drug screen identifies potentially promising therapeutics for clinical trials. However, limitations that persist in current disease modeling with limited physiological relevancy of human patients skew drug responses, hamper translation of clinical efficacy, and contribute to high clinical attritions. The emergence of induced pluripotent stem cell (iPSC) technology revolutionizes the paradigm of drug discovery. In particular, iPSC-based three-dimensional (3D) tissue engineering that appears as a promising vehicle of in vitro disease modeling provides more sophisticated tissue architectures and micro-environmental cues than a traditional two-dimensional (2D) culture. Here we discuss 3D based organoids/spheroids that construct the advanced modeling with evolved structural complexity, which propels drug discovery by exhibiting more human specific and diverse pathologies that are not perceived in 2D or animal models. We will then focus on various central nerve system (CNS) disease modeling using human iPSCs, leading to uncovering disease pathogenesis that guides the development of therapeutic strategies. Finally, we will address new opportunities of iPSC-assisted drug discovery with multi-disciplinary approaches from bioengineering to Omics technology. Despite technological challenges, iPSC-derived cytoarchitectures through interactions of diverse cell types mimic patients’ CNS and serve as a platform for therapeutic development and personalized precision medicine.


Biomedicines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 161
Author(s):  
Alexandra Gatzios ◽  
Matthias Rombaut ◽  
Karolien Buyl ◽  
Joery De Kock ◽  
Robim M. Rodrigues ◽  
...  

Although most same-stage non-alcoholic fatty liver disease (NAFLD) patients exhibit similar histologic sequelae, the underlying mechanisms appear to be highly heterogeneous. Therefore, it was recently proposed to redefine NAFLD to metabolic dysfunction-associated fatty liver disease (MAFLD) in which other known causes of liver disease such as alcohol consumption or viral hepatitis do not need to be excluded. Revised nomenclature envisions speeding up and facilitating anti-MAFLD drug development by means of patient stratification whereby each subgroup would benefit from distinct pharmacological interventions. As human-based in vitro research fulfils an irrefutable step in drug development, action should be taken as well in this stadium of the translational path. Indeed, most established in vitro NAFLD models rely on short-term exposure to fatty acids and use lipid accumulation as a phenotypic benchmark. This general approach to a seemingly ambiguous disease such as NAFLD therefore no longer seems applicable. Human-based in vitro models that accurately reflect distinct disease subgroups of MAFLD should thus be adopted in early preclinical disease modeling and drug testing. In this review article, we outline considerations for setting up translational in vitro experiments in the MAFLD era and allude to potential strategies to implement MAFLD heterogeneity into an in vitro setting so as to better align early drug development with future clinical trial designs.


2020 ◽  
Vol 57 (3) ◽  
pp. 358-368
Author(s):  
Radhakrishna Sura ◽  
Terry Van Vleet ◽  
Brian R. Berridge

High-throughput in vitro models lack human-relevant complexity, which undermines their ability to accurately mimic in vivo biologic and pathologic responses. The emergence of microphysiological systems (MPS) presents an opportunity to revolutionize in vitro modeling for both basic biomedical research and applied drug discovery. The MPS platform has been an area of interdisciplinary collaboration to develop new, predictive, and reliable in vitro methods for regulatory acceptance. The current MPS models have been developed to recapitulate an organ or tissue on a smaller scale. However, the complexity of these models (ie, including all cell types present in the in vivo tissue) with appropriate structural, functional, and biochemical attributes are often not fully characterized. Here, we provide an overview of the capabilities and limitations of the microfluidic MPS model (aka organs-on-chips) within the scope of drug development. We recommend the engagement of pathologists early in the MPS design, characterization, and validation phases, because this will enable development of more robust and comprehensive MPS models that can accurately replicate normal biology and pathophysiology and hence be more predictive of human responses.


2020 ◽  
Vol 25 (10) ◽  
pp. 1174-1190
Author(s):  
Jason E. Ekert ◽  
Julianna Deakyne ◽  
Philippa Pribul-Allen ◽  
Rebecca Terry ◽  
Christopher Schofield ◽  
...  

The pharmaceutical industry is continuing to face high research and development (R&D) costs and low overall success rates of clinical compounds during drug development. There is an increasing demand for development and validation of healthy or disease-relevant and physiological human cellular models that can be implemented in early-stage discovery, thereby shifting attrition of future therapeutics to a point in discovery at which the costs are significantly lower. There needs to be a paradigm shift in the early drug discovery phase (which is lengthy and costly), away from simplistic cellular models that show an inability to effectively and efficiently reproduce healthy or human disease-relevant states to steer target and compound selection for safety, pharmacology, and efficacy questions. This perspective article covers the various stages of early drug discovery from target identification (ID) and validation to the hit/lead discovery phase, lead optimization, and preclinical safety. We outline key aspects that should be considered when developing, qualifying, and implementing complex in vitro models (CIVMs) during these phases, because criteria such as cell types (e.g., cell lines, primary cells, stem cells, and tissue), platform (e.g., spheroids, scaffolds or hydrogels, organoids, microphysiological systems, and bioprinting), throughput, automation, and single and multiplexing endpoints will vary. The article emphasizes the need to adequately qualify these CIVMs such that they are suitable for various applications (e.g., context of use) of drug discovery and translational research. The article ends looking to the future, in which there is an increase in combining computational modeling, artificial intelligence and machine learning (AI/ML), and CIVMs.


2021 ◽  
Author(s):  
Angela Ruohao Wu ◽  
Sin Yen Tan ◽  
Qiuyu Jing ◽  
Ziuwin Leung ◽  
Ying Xu

In vitro models of vasculature are of great importance for modelling vascular physiology and pathology. However, there is usually a lack of proper spatial patterning of interacting heterotypic cells in conventional vasculature dish models, which might confound results between contact and non-contact interactions. We use a microfluidic platform with structurally defined separation between human microvasculature and fibroblasts to probe their dynamic, paracrine interactions. We also develop a novel, versatile technique to retrieve cells embedded in extracellular matrix from the microfluidic device for downstream transcriptomic analysis, and uncover growth factor and cytokine expression profiles associated with improved vasculature growth. Paired receptor-ligand analysis further reveals paracrine signaling molecules that could be supplemented into the medium for vasculatures models where fibroblast co-culture is undesirable or infeasible. These findings also provide deeper insights into the molecular cues for more physiologically relevant vascular mimicry and vascularized organoid model for clinical applications such as drug screening and disease modeling.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 331 ◽  
Author(s):  
Miguel Pinto ◽  
Carlos Fernandes ◽  
Eva Martins ◽  
Renata Silva ◽  
Sofia Benfeito ◽  
...  

The current pharmacological treatments for Parkinson’s disease only offer symptomatic relief to the patients and are based on the administration of levodopa and catechol-O-methyltransferase or monoamine oxidase-B inhibitors (IMAO-B). Since the majority of drug candidates fail in pre- and clinical trials, due largely to bioavailability pitfalls, the use of polymeric nanoparticles (NPs) as drug delivery systems has been reported as an interesting tool to increase the stealth capacity of drugs or help drug candidates to surpass biological barriers, among other benefits. Thus, a novel potent, selective, and reversible IMAO-B (chromone C27, IC50 = 670 ± 130 pM) was encapsulated in poly(caprolactone) (PCL) NPs by a nanoprecipitation process. The resulting C27-loaded PEGylated PCL NPs (~213 nm) showed high stability and no cytotoxic effects in neuronal (SH-SY5Y), epithelial (Caco-2), and endothelial (hCMEC/D3) cells. An accumulation of PEGylated PCL NPs in the cytoplasm of SH-SY5Y and hCMEC/D3 cells was also observed, and their permeation across Caco-2 and hCMEC/D3 cell monolayers, used as in vitro models of the human intestine and blood-brain barrier, respectively, was demonstrated. PEGylated PCL NPs delivered C27 at concentrations higher than the MAO-B IC50 value, which provides evidence of their relevance to solving the drug discovery pitfalls.


Sign in / Sign up

Export Citation Format

Share Document