Calculation of deformation of gear teeth

2022 ◽  
pp. 431-432
Keyword(s):  
2017 ◽  
Vol 54 (7) ◽  
pp. 469-484
Author(s):  
F. Ahrens ◽  
H. Oelschner ◽  
F. M. Ahrens

2020 ◽  
Vol 13 (4) ◽  
pp. 352-365
Author(s):  
Guangxin Wang ◽  
Lili Zhu ◽  
Peng Wang ◽  
Jia Deng

Background: Nutation drive is being extensively investigated due to its ability to achieve a high reduction ratio with a compact structure and the potential for low vibration, high efficiency and design flexibility. However, many problems including the difficulty to process the inner bevel gear, less number of teeth in engagement and not being suitable for high-power transmission have restricted its development. Objective: The purpose of this paper is to analyze the contact strength of a patent about a new nutation drive developed based on meshing between two face gears, which has the advantages of both face gear and nutation drive, including large transmission ratio, large coincidence, small size, compact structure and strong bearing capacity. Methods: Based on the meshing principle and basic structure of the nutation face gear drive, the contact strength of nutation face gear transmission is analyzed by the Hertz contact analysis method and FEM method. Results: The maximum stress values of nutation face gear teeth are compared by two methods, which verify the accuracy of Hertz contact analytical method in calculating the contact strength of nutation face gear teeth. Furthermore, nine groups of three-dimensional models for the nutation face gear drive with a transmission ratio of 52 and different cutter parameters are established. Conclusion: The study analyzes the contact stress of fixed and rotary face gears in meshing with planetary face gears, and obtains the distribution law of contact stress and the influence of the number of teeth and parameters of the cutter on the load-carrying capacity.


Author(s):  
H Long ◽  
A A Lord ◽  
D T Gethin ◽  
B J Roylance

This paper investigates the effects of gear geometry, rotational speed and applied load, as well as lubrication conditions on surface temperature of high-speed gear teeth. The analytical approach and procedure for estimating frictional heat flux and heat transfer coefficients of gear teeth in high-speed operational conditions was developed and accounts for the effect of oil mist as a cooling medium. Numerical simulations of tooth temperature based on finite element analysis were established to investigate temperature distributions and variations over a range of applied load and rotational speed, which compared well with experimental measurements. A sensitivity analysis of surface temperature to gear configuration, frictional heat flux, heat transfer coefficients, and oil and ambient temperatures was conducted and the major parameters influencing surface temperature were evaluated.


1990 ◽  
Vol 112 (4) ◽  
pp. 590-595 ◽  
Author(s):  
J. H. Steward

In this paper, the requirements for an accurate 3D model of the tooth contact-line load distribution in real spur gears are summarized. The theoretical results (obtained by F.E.M.) for the point load compliance of wide-faced spur gear teeth are set out. These values compare well with experimental data obtained from tests on a large spur gear (18 mm module, 18 teeth).


2003 ◽  
Vol 267 (5) ◽  
pp. 1065-1084 ◽  
Author(s):  
L. Vedmar ◽  
A. Andersson
Keyword(s):  

2013 ◽  
Vol 135 (6) ◽  
Author(s):  
R. Fargère ◽  
P. Velex

A global model of mechanical transmissions is introduced which deals with most of the possible interactions between gears, shafts, and hydrodynamic journal bearings. A specific element for wide-faced gears with nonlinear time-varying mesh stiffness and tooth shape deviations is combined with shaft finite elements, whereas the bearing contributions are introduced based on the direct solution of Reynolds' equation. Because of the large bearing clearances, particular attention has been paid to the definition of the degrees-of-freedom and their datum. Solutions are derived by combining a time step integration scheme, a Newton–Raphson method, and a normal contact algorithm in such a way that the contact conditions in the bearings and on the gear teeth are simultaneously dealt with. A series of comparisons with the experimental results obtained on a test rig are given which prove that the proposed model is sound. Finally, a number of results are presented which show that parameters often discarded in global models such as the location of the oil inlet area, the oil temperature in the bearings, the clearance/elastic couplings interactions, etc. can be influential on static and dynamic tooth loading.


Sign in / Sign up

Export Citation Format

Share Document