Combined salinity and waterlogging stress in plants: limitations and tolerance mechanisms

2022 ◽  
pp. 95-112
Author(s):  
Saddam Hussain ◽  
Umer Mehmood ◽  
Umair Ashraf ◽  
Muhammad Asad Naseer
2020 ◽  
Vol 7 (2) ◽  
pp. 142-153 ◽  
Author(s):  
Kazi Khayrul Bashar ◽  
Md. Zablul Tareq ◽  
Md. Shahidul Islam

Waterlogging is a major abiotic stress affecting crop plants throughout the world, which hampers crop growth and causes yield loss. There are various types of responses in plants under this stress through the combined operation of different signaling and physiological pathways. However, the correlation between these pathways is extremely limited and not well described in the published papers. Therefore, the complex waterlogging stress-tolerance mechanisms need to be presented most coherently for a comprehensive understanding of this stress. Here, we present sequential responses in plants under oxygen-deprivation stress. The regulation of the N-end rule pathway may be treated as the initial signaling in plants after facing waterlogging stress, but still, it remains a controversial topic. All the pathways under waterlogging stress are directly or indirectly related to glycolysis, tricarboxylic acid (TCA) cycle, programmed cell death (PCD) and removal of reactive oxygen species (ROS). Scientists may consider alanine aminotransferase as the main controlling switch for surviving of plants under waterlogging stress. Triggering the genes responsible for alanine aminotransferase may act as a crucial one to develop a waterlogging tolerant plant due to its ability to control anaerobic fermentation, TCA cycle and efficient utilization of carbons.


2018 ◽  
Vol 34 (1) ◽  
pp. 51-64
Author(s):  
A. Hemantaranjan ◽  
◽  
C.P. Malik ◽  
A. Nishant Bhanu ◽  
◽  
...  

Author(s):  
Noreen Zahra ◽  
Muhammad Bilal Hafeez ◽  
Kanval Shaukat ◽  
Abdul Wahid ◽  
Sadam Hussain ◽  
...  

Pathogens ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 144
Author(s):  
William Little ◽  
Caroline Black ◽  
Allie Clinton Smith

With the development of next generation sequencing technologies in recent years, it has been demonstrated that many human infectious processes, including chronic wounds, cystic fibrosis, and otitis media, are associated with a polymicrobial burden. Research has also demonstrated that polymicrobial infections tend to be associated with treatment failure and worse patient prognoses. Despite the importance of the polymicrobial nature of many infection states, the current clinical standard for determining antimicrobial susceptibility in the clinical laboratory is exclusively performed on unimicrobial suspensions. There is a growing body of research demonstrating that microorganisms in a polymicrobial environment can synergize their activities associated with a variety of outcomes, including changes to their antimicrobial susceptibility through both resistance and tolerance mechanisms. This review highlights the current body of work describing polymicrobial synergism, both inter- and intra-kingdom, impacting antimicrobial susceptibility. Given the importance of polymicrobial synergism in the clinical environment, a new system of determining antimicrobial susceptibility from polymicrobial infections may significantly impact patient treatment and outcomes.


2021 ◽  
Vol 22 (15) ◽  
pp. 8197
Author(s):  
Kinga Kęska ◽  
Michał Wojciech Szcześniak ◽  
Adela Adamus ◽  
Małgorzata Czernicka

Low oxygen level is a phenomenon often occurring during the cucumber cultivation period. Genes involved in adaptations to stress can be regulated by non-coding RNA. The aim was the identification of long non-coding RNAs (lncRNAs) involved in the response to long-term waterlogging stress in two cucumber haploid lines, i.e., DH2 (waterlogging tolerant—WL-T) and DH4 (waterlogging sensitive—WL-S). Plants, at the juvenile stage, were waterlogged for 7 days (non-primed, 1xH), and after a 14-day recovery period, plants were stressed again for another 7 days (primed, 2xH). Roots were collected for high-throughput RNA sequencing. Implementation of the bioinformatic pipeline made it possible to determine specific lncRNAs for non-primed and primed plants of both accessions, highlighting differential responses to hypoxia stress. In total, 3738 lncRNA molecules were identified. The highest number (1476) of unique lncRNAs was determined for non-primed WL-S plants. Seventy-one lncRNAs were depicted as potentially being involved in acquiring tolerance to hypoxia in cucumber. Understanding the mechanism of gene regulation under long-term waterlogging by lncRNAs and their interactions with miRNAs provides sufficient information in terms of adaptation to the oxygen deprivation in cucumber. To the best of our knowledge, this is the first report concerning the role of lncRNAs in the regulation of long-term waterlogging tolerance by priming application in cucumber.


Electronics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1179
Author(s):  
Jonatan Sánchez ◽  
Antonio da Silva ◽  
Pablo Parra ◽  
Óscar R. Polo ◽  
Agustín Martínez Hellín ◽  
...  

Multicore hardware platforms are being incorporated into spacecraft on-board systems to achieve faster and more efficient data processing. However, such systems lead to increased complexity in software development and represent a considerable challenge, especially concerning the runtime verification of fault-tolerance requirements. To address the ever-challenging verification of this kind of requirement, we introduce a LEON4 multicore virtual platform called LeonViP-MC. LeonViP-MC is an evolution of a previous development called Leon2ViP, carried out by the Space Research Group of the University of Alcalá (SRG-UAH), which has been successfully used in the development and testing of the flight software of the instrument control unit (ICU) of the energetic particle detector (EPD) on board the Solar Orbiter. This paper describes the LeonViP-MC architectural design decisions oriented towards fault-injection campaigns to verify software fault-tolerance mechanisms. To validate the simulator, we developed an ARINC653 communications channel that incorporates fault-tolerance mechanisms and is currently being used to develop a hypervisor level for the GR740 platform.


Genes ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 225
Author(s):  
Lei Xuan ◽  
Jianfeng Hua ◽  
Fan Zhang ◽  
Zhiquan Wang ◽  
Xiaoxiao Pei ◽  
...  

The Taxodium hybrid ‘Zhongshanshan 406’ (T. hybrid ‘Zhongshanshan 406’) [Taxodium mucronatum Tenore × Taxodium distichum (L.). Rich] has an outstanding advantage in flooding tolerance and thus has been widely used in wetland afforestation in China. Alcohol dehydrogenase genes (ADHs) played key roles in ethanol metabolism to maintain energy supply for plants in low-oxygen conditions. Two ADH genes were isolated and characterized—ThADH1 and ThADH4 (GenBank ID: AWL83216 and AWL83217—basing on the transcriptome data of T. hybrid ‘Zhongshanshan 406’ grown under waterlogging stress. Then the functions of these two genes were investigated through transient expression and overexpression. The results showed that the ThADH1 and ThADH4 proteins both fall under ADH III subfamily. ThADH1 was localized in the cytoplasm and nucleus, whereas ThADH4 was only localized in the cytoplasm. The expression of the two genes was stimulated by waterlogging and the expression level in roots was significantly higher than those in stems and leaves. The respective overexpression of ThADH1 and ThADH4 in Populus caused the opposite phenotype, while waterlogging tolerance of the two transgenic Populus significantly improved. Collectively, these results indicated that genes ThADH1 and ThADH4 were involved in the tolerance and adaptation to anaerobic conditions in T. hybrid ‘Zhongshanshan 406’.


Sign in / Sign up

Export Citation Format

Share Document