Hydrological data sources and analysis for the determination of environmental water requirements in mountainous areas

2021 ◽  
pp. 51-98
Author(s):  
Konstantinos X. Soulis
2020 ◽  
Vol 16 (5) ◽  
pp. 748-756
Author(s):  
Mir Waqas Alam ◽  
Tentu Nageswara Rao ◽  
Yarasani Prashanthi ◽  
Vourse Sridhar ◽  
Adil Alshoaibi ◽  
...  

Background: Herbicides are very beneficial in the crop yield with the aid of controlling weeds within the agriculture, but several herbicides are chronic in soil. Objective: In this study, nanoparticles and the packages of synthesized novel silica nanoparticles were studied for the preconcentration of herbicides. Methods: These nanoparticles prepared by the Stöber mechanism were purified and functionalized. Nanoparticles thus prepared successfully were used as supporting material for the preconcentration of residues of herbicides in the water. Results: Preconcentration was achieved by preparing the silica-based solid-phase-extraction cartridges. Nanoparticles used for this purpose were within the range of 50-250 nm. An SPE cartridge was prepared by packing 200 mg of silica nanoparticle in the empty cartridge of diameter 5.5 cm and length 0.6 cm in between PTFE frits. Aqueous solutions of 0.1 μg/ml of herbicides were prepared separately, and 10 ml of the solution was passed through the cartridge at the rate of 0.2 ml/min. After passing 10 ml volume of the aqueous solution, residues adsorbed on the cartridge were eluted using 2 ml of acetonitrile. The eluate was injected to determine the herbicide residue adsorbed on the SPE cartridge. Conclusion: In the study, it was found that greater than 90% of the herbicide residues were trapped on silica nanoparticle-based SPE cartridge. An analytical method was developed for the simultaneous determination of these herbicides. The residues were quantified by LC-MS/MS with ESI mode.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Wajid Ali Khan ◽  
Muhammad Balal Arain ◽  
Hashmat Bibi ◽  
Mustafa Tuzen ◽  
Nasrullah Shah ◽  
...  

AbstractIn this study, an extremely effective electromembrane extraction (EME) method was developed for the selective extraction of Cu(II) followed by Red-Green-Blue (RGB) detection. The effective parameters optimized for the extraction efficiency of EME include applied voltage, extraction time, supported liquid membrane (SLM) composition, pH of acceptor/donor phases, and stirring rate. Under optimized conditions, Cu(II) was extracted from a 3 mL aqueous donor phase to 8 µL of 100 mM HCl acceptor solution through 1-octanol SLM using an applied voltage of 50 V for 15 min. The proposed method provides a working range of 0.1–0.75 µg·mL−1 with 0.03 µg·mL−1 limit for detection. Finally, the developed technique was applied to different environmental water samples for monitoring environmental pollution. Obtained relative recoveries were within the range of 93–106%. The relative standard deviation (RSD) and enhancement factor (EF) were found to be ≤4.8% and 100 respectively. We hope that this method can be introduced for quantitative determination of Cu(II) as a fast, simple, portable, inexpensive, effective, and precise procedure.


Sign in / Sign up

Export Citation Format

Share Document