Effect of different polybutylene succinate (PBS)/starch formulation on food tray by thermoforming process

Author(s):  
Rafiqah S. Ayu ◽  
Abdan Khalina
Author(s):  
Heron Silva ◽  
Aurélio da Costa Sabino Netto ◽  
Milton Pereira

2021 ◽  
Vol 13 (4) ◽  
pp. 2073 ◽  
Author(s):  
Hossein Mohammadhosseini ◽  
Rayed Alyousef ◽  
Mahmood Md. Tahir

Recycling of waste plastics is an essential phase towards cleaner production and circular economy. Plastics in different forms, which are non-biodegradable polymers, have become an indispensable ingredient of human life. The rapid growth of the world population has led to increased demand for commodity plastics such as food packaging. Therefore, to avert environment pollution with plastic wastes, sufficient management to recycle this waste is vital. In this study, experimental investigations and statistical analysis were conducted to assess the feasibility of polypropylene type of waste plastic food tray (WPFT) as fibrous materials on the mechanical and impact resistance of concrete composites. The WPFT fibres with a length of 20 mm were used at dosages of 0–1% in two groups of concrete with 100% ordinary Portland cement (OPC) and 30% palm oil fuel ash (POFA) as partial cement replacement. The results revealed that WPFT fibres had an adverse effect on the workability and compressive strength of concrete mixes. Despite a slight reduction in compressive strength of concrete mixtures, tensile and flexural strengths significantly enhanced up to 25% with the addition of WPFT fibres. The impact resistance and energy absorption values of concrete specimens reinforced with 1% WPFT fibres were found to be about 7.5 times higher than those of plain concrete mix. The utilisation of waste plastic food trays in the production of concrete makes it low-cost and aids in decreasing waste discarding harms. The development of new construction materials using WPFT is significant to the environment and construction industry.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2133
Author(s):  
Helena Oliver-Ortega ◽  
Josep Tresserras ◽  
Fernando Julian ◽  
Manel Alcalà ◽  
Alba Bala ◽  
...  

Packaging consumes around 40% of the total plastic production. One of the most important fields with high requirements is food packaging. Food packaging products have been commonly produced with petrol polymers, but due to environmental concerns, the market is being moved to biopolymers. Poly (lactic acid) (PLA) is the most promising biopolymer, as it is bio-based and biodegradable, and it is well established in the market. Nonetheless, its barrier properties need to be enhanced to be competitive with other polymers such as polyethylene terephthalate (PET). Nanoclays improve the barrier properties of polymeric materials if correct dispersion and exfoliation are obtained. Thus, it marks a milestone to obtain an appropriate dispersion. A predispersed methodology is proposed as a compounding process to improve the dispersion of these composites instead of common melt procedures. Afterwards, the effect of the polarity of the matrix was analyzing using polar and surface modified nanoclays with contents ranging from 2 to 8% w/w. The results showed the suitability of the predispersed and concentrated compound, technically named masterbatch, to obtain intercalated structures and the higher dispersion of polar nanoclays. Finally, the mechanical performance and sustainability of the prepared materials were simulated in a food tray, showing the best assessment of these materials and their lower fingerprint.


2018 ◽  
Vol 775 ◽  
pp. 26-31
Author(s):  
Sukantika Manatsittipan ◽  
Kamonthip Kuttiyawong ◽  
Kazuo Ito ◽  
Sunan Tiptipakorn

In this study, the biodegradability and thermal properties the composites of polybutylene succinate (PBS) and chitosan of different molecular weights (Mn = 104,105, and 106 Da) were prepared at chitosan contents of 0-10 wt%. After 10 days of microbial degradation, the results show that the amount of holes from degradation was increased with either decreasing Mn or increasing chitosan contents. However, the size of holes was increased with increasing Mn and chitosan contents. The results from Differential Scanning Calorimeter (DSC) present that the melting temperature (Tm) of PBS was decreased with increasing chitosan contents. Moreover, there was no significant difference between Tm of the composites with different Mn of chitosan. From the TGA thermograms, the decomposition temperature at 10% weight loss (Td10) was decreased with increasing chitosan contents. Moreover, the water absorption of PBS/chitosan composites was increased with increasing Mn and content of chitosan.


Author(s):  
Christine Kallmayer ◽  
Florian Schaller ◽  
Thomas Loher ◽  
Julian Haberland ◽  
Fabian Kayatz ◽  
...  

2007 ◽  
Vol 7 (11) ◽  
pp. 3830-3833 ◽  
Author(s):  
Hee-Seon Bang ◽  
Han-Sur Bang ◽  
Yoon-Ki Lee

Photocatalytic TiO2 coatings on bio-degradable plastic(polybutylene succinate: PBS) were prepared by HVOF spraying using three kinds of agglomerated powders (P200: 200 nm, P30: 30 nm, P7: 7 nm). The microstructures of the coatings were characterized with SEM and XRD analysis, and the photocatalytic efficiency of the coatings was evaluated by photo degradation of gaseous acetaldehyde. For both the HVOF sprayed P200 and P30 coatings, high anatase ratio of 100% was achieved, regardless of the fuel gas pressure. On the other hand, for the HVOF sprayed P7 coating, the anatase ratio decreased from 100% to 49.1% with increasing fuel gas pressure. This decrease may be attributed to the much higher susceptibility to heat of the 7 nm agglomerated powders than the 30 nm and 200 nm agglomerated powders. In terms of the photocatalytic efficiency, HVOF sprayed P200 and P30 coatings seemed to outperform the P7 coatings because of their higher anatase ratios. However, the HVOF sprayed P7 coatings did not show photocatalytic activity possibly because of the extremely small reaction surface area to the photo-catalytic activity and low anatase ratio. Therefore, the present study found that functional PBS plastic with photocatalytic performance could be produced by spraying of ceramics such as TiO2.


Sign in / Sign up

Export Citation Format

Share Document