Commercialization of silicon nanowire-based biotechnologies

2022 ◽  
pp. 401-412
Author(s):  
Jeffery L. Coffer
Keyword(s):  
2018 ◽  
Author(s):  
Shenqiu Mo ◽  
Dengke Ma ◽  
Lina Yang ◽  
Meng An ◽  
Zhiyu Liu ◽  
...  

2015 ◽  
Vol 68 ◽  
pp. 577-585 ◽  
Author(s):  
Hamed Abiri ◽  
Mohammad Abdolahad ◽  
Milad Gharooni ◽  
Seyed Ali Hosseini ◽  
Mohsen Janmaleki ◽  
...  

2021 ◽  
pp. 129515
Author(s):  
Indrajit V. Bagal ◽  
Nilesh R. Chodankar ◽  
Aadil Waseem ◽  
Muhammad Ali Johar ◽  
Swati J. Patil ◽  
...  

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Roey Elnathan ◽  
Andrew W. Holle ◽  
Jennifer Young ◽  
Marina A. George ◽  
Omri Heifler ◽  
...  

AbstractProgrammable nano-bio interfaces driven by tuneable vertically configured nanostructures have recently emerged as a powerful tool for cellular manipulations and interrogations. Such interfaces have strong potential for ground-breaking advances, particularly in cellular nanobiotechnology and mechanobiology. However, the opaque nature of many nanostructured surfaces makes non-destructive, live-cell characterization of cellular behavior on vertically aligned nanostructures challenging to observe. Here, a new nanofabrication route is proposed that enables harvesting of vertically aligned silicon (Si) nanowires and their subsequent transfer onto an optically transparent substrate, with high efficiency and without artefacts. We demonstrate the potential of this route for efficient live-cell phase contrast imaging and subsequent characterization of cells growing on vertically aligned Si nanowires. This approach provides the first opportunity to understand dynamic cellular responses to a cell-nanowire interface, and thus has the potential to inform the design of future nanoscale cellular manipulation technologies.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4213
Author(s):  
Seong-Kun Cho ◽  
Won-Ju Cho

In this study, a highly sensitive and selective sodium ion sensor consisting of a dual-gate (DG) structured silicon nanowire (SiNW) field-effect transistor (FET) as the transducer and a sodium-selective membrane extended gate (EG) as the sensing unit was developed. The SiNW channel DG FET was fabricated through the dry etching of the silicon-on-insulator substrate by using electrospun polyvinylpyrrolidone nanofibers as a template for the SiNW pattern transfer. The selectivity and sensitivity of sodium to other ions were verified by constructing a sodium ion sensor, wherein the EG was electrically connected to the SiNW channel DG FET with a sodium-selective membrane. An extremely high sensitivity of 1464.66 mV/dec was obtained for a NaCl solution. The low sensitivities of the SiNW channel FET-based sodium ion sensor to CaCl2, KCl, and pH buffer solutions demonstrated its excellent selectivity. The reliability and stability of the sodium ion sensor were verified under non-ideal behaviors by analyzing the hysteresis and drift. Therefore, the SiNW channel DG FET-based sodium ion sensor, which comprises a sodium-selective membrane EG, can be applied to accurately detect sodium ions in the analyses of sweat or blood.


Sign in / Sign up

Export Citation Format

Share Document