Decentralized biogas plants: status, prospects, and challenges

2022 ◽  
pp. 473-484
Author(s):  
T.E. Rasimphi ◽  
D. Tinarwo ◽  
C. Sambo ◽  
M.A. Mutheiwana ◽  
P. Mhlanga
Keyword(s):  
2016 ◽  
Vol 2 (04) ◽  
pp. 225-230
Author(s):  
L Tóth ◽  
J Beke ◽  
Z Bártfai ◽  
I Szabó ◽  
I Oldal ◽  
...  

2020 ◽  
Vol 2 (7) ◽  
pp. 171-184
Author(s):  
Z. U. SAIPOV ◽  
◽  
G. A. ARIFDZHANOV ◽  

Energy is one of the main pillars of the state’s economy, which is currently facing serious problems due to depletion of mineral energy resources and the threatening environment. As a result, presently around the world there is a rapid growth and development of energy-efficient technologies and the use of renewable energy sources (RES), providing an increase in energy resources, as well as environmental and social effects. One of the most relevant and promising areas of renewable energy development is the disposal and processing of organic waste in biogas plants, and this is particularly relevant in agricultural regions. In this regard, this paper considers the state and prospects for the development of bioenergy in agricultural regions of Uzbekistan, where half of the population of the republic lives. The potential of organic waste from livestock and poultry farming of the agricultural sector was determined, and it was revealed that the use of biogas plants for the disposal of manure and litter is clearly a profitable production and requires close attention from rural producers. The introduction of biogas technologies for the bulk of agricultural producers is an urgent task, that will ensure not only a solution to the waste problem, but it will also provide a solution to energy, agricultural, environmental and social problems in rural regions of the republic.


Author(s):  
Judith González-Arias ◽  
Francisco M. Baena-Moreno ◽  
Miriam Gonzalez-Castaño ◽  
Harvey Arellano-García ◽  
Eric Lichtfouse ◽  
...  
Keyword(s):  

2021 ◽  
Vol 9 (7) ◽  
pp. 1457
Author(s):  
Julia Hassa ◽  
Johanna Klang ◽  
Dirk Benndorf ◽  
Marcel Pohl ◽  
Benedikt Hülsemann ◽  
...  

There are almost 9500 biogas plants in Germany, which are predominantly operated with energy crops and residues from livestock husbandry over the last two decades. In the future, biogas plants must be enabled to use a much broader range of input materials in a flexible and demand-oriented manner. Hence, the microbial communities will be exposed to frequently varying process conditions, while an overall stable process must be ensured. To accompany this transition, there is the need to better understand how biogas microbiomes respond to management measures and how these responses affect the process efficiency. Therefore, 67 microbiomes originating from 49 agricultural, full-scale biogas plants were taxonomically investigated by 16S rRNA gene amplicon sequencing. These microbiomes were separated into three distinct clusters and one group of outliers, which are characterized by a specific distribution of 253 indicative taxa and their relative abundances. These indicative taxa seem to be adapted to specific process conditions which result from a different biogas plant operation. Based on these results, it seems to be possible to deduce/assess the general process condition of a biogas digester based solely on the microbiome structure, in particular on the distribution of specific indicative taxa, and without knowing the corresponding operational and chemical process parameters. Perspectively, this could allow the development of detection systems and advanced process models considering the microbial diversity.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2431
Author(s):  
Roberto Murano ◽  
Natascia Maisano ◽  
Roberta Selvaggi ◽  
Gioacchino Pappalardo ◽  
Biagio Pecorino

Nowadays, most Italian biogas produces electricity even though recent political incentives are promoting biomethane from biogas by “upgrading” it. The aim of this paper is to focus on the regulatory framework for producing biomethane from new or already-existent anaerobic digestion plants. The complexity and lack of knowledge of the regulations on biofuel production and of anaerobic digested biomethane from waste and by-products create difficulties of both interpretation and application. Consequently, the aim of this paper is to analyze the regulations for producing biomethane, underline the critical issues and opportunities, and evaluate whether an electrical plant built in the last 10 years in Italy can really be converted to a biomethane plant, thereby lengthening its lifespan. Three case studies were considered to look more closely into applying Italian biomethane incentives and to simulate the types of incentivization in agriculture with examples based on certain fuel types typical of a standard biomethane plant of 500 standard cubic meter per hour. All the considered cases put in evidence that biomethane is a further opportunity for development with a high level of efficiency for all biogas producers, especially for many biogas plants whose incentivization period is about to finish.


2021 ◽  
Vol 11 (9) ◽  
pp. 3916
Author(s):  
Marta Wiśniewska ◽  
Andrzej Kulig ◽  
Krystyna Lelicińska-Serafin

Municipal waste treatment plants are an important element of the urban area infrastructure, but also, they are a potential source of odour nuisance. Odour impact from municipal waste processing plants raises social concerns regarding the well-being of employees operating the plants and residents of nearby areas. Chemical methods involve the determination of the quantitative composition of compounds comprising odour. These methods are less costly than olfactometry, and their efficiency is not dependent on human response. The relationship between the concentration of a single odorant and its odour threshold (OT) is determined by the odour activity value (OAV) parameter. The research involved the application of a multi-gas detector, MultiRae Pro. Measurements by means of the device were conducted at three municipal waste biogas plants located in Poland. In this paper we describe the results obtained when using a detector during the technological processes, the unitary procedures conducted at the plants, and the technological regime. The determination of these relationships could be useful in the development of odour nuisance minimization procedures at treatment plants and the adjustment to them. This is of paramount importance from the viewpoint of the safety and hygiene of the employees operating the installations and the comfort of residents in the areas surrounding biogas plants. Monitoring of expressed odorant emissions allows the course of technological processes and conducted unit operations to be controlled.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2424
Author(s):  
Jan Martin Zepter ◽  
Jan Engelhardt ◽  
Tatiana Gabderakhmanova ◽  
Mattia Marinelli

Biogas plants may support the transformation towards renewable-based and integrated energy systems by providing dispatchable co-generation as well as opportunities for biogas upgrading or power-to-X conversion. In this paper, a simulation model that comprises the main dynamics of the internal processes of a biogas plant is developed. Based on first-order kinetics of the anaerobic digestion process, the biogas production of an input feeding schedule of raw material can be estimated. The output of the plant in terms of electrical and thermal energy is validated against empirical data from a 3-MW biogas plant on the Danish island of Bornholm. The results show that the model provides an accurate representation of the processes within a biogas plant. The paper further provides insights on the functioning of the biogas plant on Bornholm as well as discusses upgrading potentials of biogas to biomethane at the plant from an energy perspective.


2019 ◽  
Vol 300 ◽  
pp. 1-10 ◽  
Author(s):  
Magdalena Nagler ◽  
Katja Kozjek ◽  
Mohammad Etemadi ◽  
Heribert Insam ◽  
Sabine Marie Podmirseg
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document