Forced aeration composting, aerated static pile, and similar methods

2022 ◽  
pp. 197-269
Author(s):  
Frederick Michel ◽  
Tim O'Neill ◽  
Robert Rynk ◽  
Jane Gilbert ◽  
Matthew Smith ◽  
...  
Keyword(s):  
Parasitology ◽  
1976 ◽  
Vol 73 (3) ◽  
pp. 311-326 ◽  
Author(s):  
J. F. Ryley ◽  
R. Meade ◽  
Judith Hazelhurst ◽  
Thelma E. Robinson

Factors which may be important in the large-scale extraction of coccidial oocysts from faeces have been investigated with Eimeria tenella. Age of bird, inoculum, feeding status at the time of inoculation, period of collection, feeding status during collection, collection medium, homogenization and sieving, flotation, washing, sporulation and further purification have all been considered. The aim has been to establish a method to produce the maximum number of oocysts of a required degree of purity and viability, with the expenditure of the minimum amount of physical effort, time, animals and chemicals. In our method, groups of chickens 3–4 weeks of age are inoculated with 5000 oocysts of E. tenella and food is supplied ad lib. Over the period 5–8 days after inoculation, faeces are collected in trays containing 2% (w/v) potassium dichromate solution, while food intake is restricted. The faecal material is homogenized, passed once through 40 and 100 mesh sieves, centrifuged and the oocysts recovered from the sediment by 3 flotations in saturated salt solution. Following washing, oocysts are sporulated by forced aeration at 30°C and may be further purified by hypochlorite treatment, or passage in 5% Tween 80 solution through a glass bead column followed by sucrose density gradient centri-fugation. Routine passages along these lines over a 5 year period have given a recovery of 46% of the oocysts excreted by over 7000 birds.


1987 ◽  
Vol 19 (5-6) ◽  
pp. 839-845 ◽  
Author(s):  
J. T. Pereira-Neto ◽  
E. I. Stentiford ◽  
D. D. Mara

The forced aeration static pile composting system was used to compost mixtures of domestic refuse and sewage sludge. Several different control methods have been evaluated over the past four years from simple, low cost fixed rate aeration timers to microcomputer based systems. Their relative merits are considered. In a compost pile using temperature feedback control the number of Escherichia coli were reduced from 107 org./g to less than 102 org./g. within 16 days. Faecal streptococci were reduced from 107 to less than 102 org./g within 30 days. The process consistently produced a good quality sanitised material under a range of control regimes.


2017 ◽  
Author(s):  
Jorge Antonio Lopes ◽  
Graciane Silva ◽  
Marcia Marques ◽  
Sérgio Machado Correa

Bioremediation of aged and newly clayey soil contaminated with crude oil was investigated in lab-scale using two different strategies (biostimulation-BIOS and bioaugmentation-BIOA), also simulating two different technological options: dynamic biopile (M) and static biopile with forced aeration (B). The inoculum used for bioaugmentation was obtained from the aged contaminated soil. The treatments were performed in triplicates and included one control (original contaminated soil-CONT). The treatments were monitored with soil sampling obtained after 0, 24, 59 and 121 days when the populations of total heterotrophic microorganism (THM), total fungi (TF), and oil-degrading microorganism (ODM) as well as the extracted total petroleum hydrocarbons (TPH) and the 16 polycyclic aromatic hydrocarbons (PAH) prioritized by U.S. EPA were analyzed by gas chromatography. It was observed a trend for reduction of the microbial population density from 0 to 121 days. As expected, the population densities of THM and ODM were much higher in bio-augmented soils in both technologies (BIOA-m and BIOA-b) at day 0. However, after 121 days, the superiority in THM density was observed only in the bioreactor simulating static biopile with forced aeration (BIOA-b). Regarding treatment efficiency, the static biopile with forced aeration performed better in the removal of TPH when associated with bioaugmentation (BIOA-b), being equivalent to the microcosms (simulating dynamic biopile) for the other treatments (CONT and BIOS). For PAH, the superiority of the bioreactor was less conspicuous but observed in both bioremediation strategies (biostimulation BIOS-b and bioaugmentation BIOA-b). The results suggested that regarding TPH, the strategy of bioaugmentation was superior to biostimulation and that the bioreactor (simulating static biopile with forced aeration) reached better contaminant reductions than the microcosm (simulating dynamic biopile). Clayey soil contaminated with crude oil poses big challenges for the bioremediation, due to the texture of the soil favouring adsorption of organic contaminants and due to the complex crude oil composition. The bioprocesses are slow, cleavage of larger molecules are likely to generate smaller hydrocarbons and therefore the elimination of the toxicity is very slow, which may require longer periods and auxiliary tools, such as surfactants.


Author(s):  
Nabil Kechaou ◽  
E Ammar

The Municipal Solid Waste of Agareb (Sfax –Tunisia), characterized by high organic fraction and moisture contents is the most worrying pollution source that must be managed by innovative treatment and recycling technologies. Bio-drying, as a waste to energy conversion technology, aims at reducing moisture content of this organic matter. This concept,  similar to composting, is accomplished by using the heat generated from the microbial degradation of the waste matrix, while forced aeration is used. The purpose of this work was to reduce the moisture content of the waste, by maximizing drying and minimizing organic matter biodegradation, in order to produce a solid recovered fuel with high calorific value.Keywords: Municipal solid wastes; organic matter; biodrying; composting; energy recovery.


2008 ◽  
Vol 99 (16) ◽  
pp. 7450-7457 ◽  
Author(s):  
Bo Yue ◽  
Tong-Bin Chen ◽  
Ding Gao ◽  
Guo-Di Zheng ◽  
Bin Liu ◽  
...  

1989 ◽  
Vol 30 (4) ◽  
pp. 275-287 ◽  
Author(s):  
J.F. Darbyshire ◽  
M.S. Davidson ◽  
G.J. Gaskin ◽  
C.D. Campbell
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document