Fibrotic diseases

2022 ◽  
pp. 27-85
Author(s):  
Giulio Gabbiani ◽  
Matteo Coen ◽  
Fabio Zampieri
Keyword(s):  
2020 ◽  
pp. 1-10
Author(s):  
Ahmadshah Farhat ◽  
Gordon A. Ferns ◽  
Korosh Ashrafi ◽  
Mohammad-Hassan Arjmand

<b><i>Background:</i></b> Malignancy is a complex process resulting from different changes such as extracellular matrix (ECM) remodeling and stiffness. One of the important enzymes that contribute to ECM remodeling is lysyl oxidase (Lox) that is overexpressed in different types of human cancers. Because of the high prevalence and poor survival of gastrointestinal (GI) malignancies in this review, we discuss the association between Lox activity and the progression of GI cancers. Lox proteins are a group of extracellular enzymes that catalyzed the cross-linking of collagen and elastin, so they have important roles in the control of structure and homeostasis of ECM. Abnormal activation and expression of the Lox family of proteins lead to changes in the ECM toward increased rigidity and fibrosis. Stiffness of ECM can contribute to the pathogenesis of cancers. <b><i>Summary:</i></b> Dysregulation of Lox expression is a factor in both fibrotic diseases and cancer. ECM stiffness by Lox overactivity creates a physical barrier against intratumoral concentration of chemotherapeutic drugs and facilitates cancer inflammation, angiogenesis, and metastasis. <b><i>Key Message:</i></b> Because of the roles of Lox in GI cancers, development targeting Lox protein isotypes may be an appropriate strategy for treatment of GI cancers and improvement in survival of patients.


Author(s):  
Long-Yuan Zhou ◽  
Si-Nan Lin ◽  
Florian Rieder ◽  
Min-Hu Chen ◽  
Sheng-Hong Zhang ◽  
...  

Abstract Fibrosis is a major pathway to organ injury and failure, accounting for more than one-third of deaths worldwide. Intestinal fibrosis causes irreversible and serious clinical complications, such as strictures and obstruction, secondary to a complex pathogenesis. Under the stimulation of profibrotic soluble factors, excessive activation of mesenchymal cells causes extracellular matrix deposition via canonical transforming growth factor-β/Smads signaling or other pathways (eg, epithelial-to-mesenchymal transition and endothelial-to-mesenchymal transition) in intestinal fibrogenesis. In recent studies, the importance of noncoding RNAs (ncRNAs) stands out in fibrotic diseases in that ncRNAs exhibit a remarkable variety of biological functions in modulating the aforementioned fibrogenic responses. In this review, we summarize the role of ncRNAs, including the emerging long ncRNAs and circular RNAs, in intestinal fibrogenesis. Notably, the translational potential of ncRNAs as diagnostic biomarkers and therapeutic targets in the management of intestinal fibrosis is discussed based on clinical trials from fibrotic diseases in other organs. The main points of this review include the following: • Characteristics of ncRNAs and mechanisms of intestinal fibrogenesis • Wide participation of ncRNAs (especially the emerging long ncRNAs and circular RNAs) in intestinal fibrosis, including transforming growth factor-β signaling, epithelial-to-mesenchymal transition/endothelial-to-mesenchymal transition, and extracellular matrix remodeling • Translational potential of ncRNAs in the diagnosis and treatment of intestinal fibrosis based on clinical trials from fibrotic diseases in other organs


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Cheng-Cheng Deng ◽  
Yong-Fei Hu ◽  
Ding-Heng Zhu ◽  
Qing Cheng ◽  
Jing-Jing Gu ◽  
...  

AbstractFibrotic skin disease represents a major global healthcare burden, characterized by fibroblast hyperproliferation and excessive accumulation of extracellular matrix. Fibroblasts are found to be heterogeneous in multiple fibrotic diseases, but fibroblast heterogeneity in fibrotic skin diseases is not well characterized. In this study, we explore fibroblast heterogeneity in keloid, a paradigm of fibrotic skin diseases, by using single-cell RNA-seq. Our results indicate that keloid fibroblasts can be divided into 4 subpopulations: secretory-papillary, secretory-reticular, mesenchymal and pro-inflammatory. Interestingly, the percentage of mesenchymal fibroblast subpopulation is significantly increased in keloid compared to normal scar. Functional studies indicate that mesenchymal fibroblasts are crucial for collagen overexpression in keloid. Increased mesenchymal fibroblast subpopulation is also found in another fibrotic skin disease, scleroderma, suggesting this is a broad mechanism for skin fibrosis. These findings will help us better understand skin fibrotic pathogenesis, and provide potential targets for fibrotic disease therapies.


2015 ◽  
Vol 12 (11) ◽  
pp. 840-847 ◽  
Author(s):  
David Alejandro Lopez-de la Mora ◽  
Cibeles Sanchez-Roque ◽  
Margarita Montoya-Buelna ◽  
Sergio Sanchez-Enriquez ◽  
Silvia Lucano-Landeros ◽  
...  
Keyword(s):  

2011 ◽  
Vol 300 (5) ◽  
pp. G723-G728 ◽  
Author(s):  
Luke Barron ◽  
Thomas A. Wynn

Dysregulated wound healing leads to fibrosis, whereby fibroblasts synthesize excess extracellular matrix and scarring impairs proper organ function. Although fibrotic diseases arise from diverse causes and display heterogeneous features, fibrosis commonly associates with chronic inflammation. Recent discoveries reinforce the idea that communication between fibroblasts, macrophages, and CD4 T cells integrates the processes of wound healing and host defense. Signals between macrophages and fibroblasts can exacerbate, suppress, or reverse fibrosis. Fibroblasts and macrophages are activated by T cells, but their activation also engages negative feedback loops that reduce fibrosis by restraining the immune response, particularly when the Th2 cytokine IL-13 contributes to pathology. Thus the interactions among fibroblasts, macrophages, and CD4 T cells likely play general and critical roles in initiating, perpetuating, and resolving fibrosis in both experimental and clinical conditions.


2017 ◽  
Vol 49 (11) ◽  
pp. e396-e396 ◽  
Author(s):  
Ruchi Bansal ◽  
Shigeki Nakagawa ◽  
Saleh Yazdani ◽  
Joop van Baarlen ◽  
Anu Venkatesh ◽  
...  

Gerontology ◽  
2016 ◽  
Vol 63 (3) ◽  
pp. 216-227 ◽  
Author(s):  
Peter Sandner ◽  
Peter Berger ◽  
Christoph Zenzmaier

Fibrotic diseases cause high rates of morbidity and mortality, and their incidence increases with age. Despite intense research and development efforts, effective and well-tolerated antifibrotic treatments are scarce. Transforming growth factor-β signaling, which is widely considered the most important profibrotic factor, causes a pro-oxidant shift in redox homeostasis and a concomitant decrease in nitric oxide (NO) signaling. The NO/cyclic guanosine monophosphate (cGMP) signaling cascade plays a pivotal role in the regulation of cell and organ function in whole-body hemostasis. Increases in NO/cGMP can lead to relaxation of smooth muscle cells triggering vasorelaxation. In addition, there is consistent evidence from preclinical in vitro and in vivo models that increased cGMP also exerts antifibrotic effects. However, most of these findings are descriptive and the molecular pathways are still being investigated. Furthermore, in a variety of fibrotic diseases and also during the natural course of aging, NO/cGMP production is low, and current treatment approaches to increase cGMP levels might not be sufficient. The introduction of compounds that specifically target and stimulate soluble guanylate cyclase (sGC), the so called sGC stimulators and sGC activators, might be able to overcome these limitations and could be ideal tools for investigating antifibrotic mechanisms in vitro and in vivo as they may provide effective treatment strategies for fibrotic diseases. These drugs increase cGMP independently from NO via direct modulation of sGC activity, and have synergistic and additive effects to endogenous NO. This review article describes the NO/cGMP signaling pathway and its involvement in fibrotic remodeling. The classes of sGC modulator drugs and their mode of action are described. Finally, the preclinical in vitro and in vivo findings and antifibrotic effects of cGMP elevation via sGC modulation are reviewed. sGC stimulators and activators significantly attenuate tissue fibrosis in a variety of internal organs and in the skin. Moreover, these compounds seem to have multiple intervention sites and may reduce extracellular matrix formation, fibroblast proliferation, and myofibroblast activation. Thus, sGC stimulators and sGC activators may offer an efficacious and tolerable therapy for fibrotic diseases, and clinical trials are currently underway to assess the potential benefit for patients with systemic sclerosis.


Sign in / Sign up

Export Citation Format

Share Document