Bioinformatics databases and tools

2022 ◽  
pp. 17-23
Author(s):  
Mohammad Yaseen Sofi ◽  
Afshana Shafi ◽  
Khalid Z. Masoodi
2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Jinglei Zheng ◽  
Miao Yu ◽  
Haochen Liu ◽  
Tao Cai ◽  
Hailan Feng ◽  
...  

AbstractThe goal of this study was to identify MSX1 gene variants in multiple Chinese families with nonsyndromic oligodontia and analyse the functional influence of these variants. Whole-exome sequencing (WES) and Sanger sequencing were performed to identify the causal gene variants in five families with nonsyndromic oligodontia, and a series of bioinformatics databases were used for variant confirmation and functional prediction. Phenotypic characterization of the members of these families was described, and an in vitro analysis was performed for functional evaluation. Five novel MSX1 heterozygous variants were identified: three missense variants [c.662A>C (p.Q221P), c.670C>T (p.R224C), and c.809C>T (p.S270L)], one nonsense variant [c.364G>T (p.G122*)], and one frameshift variant [c.277delG (p.A93Rfs*67)]. Preliminary in vitro studies demonstrated that the subcellular localization of MSX1 was abnormal with the p.Q221P, p.R224C, p.G122*, and p.A93Rfs*67 variants compared to the wild type. Three variants (p.Q221P, p.G122*, and p.A93Rfs*67) were classified as pathogenic or likely pathogenic, while p.S270L and p.R224C were of uncertain significance in the current data. Moreover, we summarized and analysed the MSX1-related tooth agenesis positions and found that the type and variant locus were not related to the severity of tooth loss. Our results expand the variant spectrum of nonsyndromic oligodontia and provide valuable information for genetic counselling.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Silu Chen ◽  
Shuai Ben ◽  
Junyi Xin ◽  
Shuwei Li ◽  
Rui Zheng ◽  
...  

AbstractSmall non-coding RNAs (ncRNAs) are vital regulators of biological activities, and aberrant levels of small ncRNAs are commonly found in precancerous lesions and cancer. PIWI-interacting RNAs (piRNAs) are a novel type of small ncRNA initially discovered in germ cells that have a specific length (24–31 nucleotides), bind to PIWI proteins, and show 2′-O-methyl modification at the 3′-end. Numerous studies have revealed that piRNAs can play important roles in tumorigenesis via multiple biological regulatory mechanisms, including silencing transcriptional and posttranscriptional gene processes and accelerating multiprotein interactions. piRNAs are emerging players in the malignant transformation of normal cells and participate in the regulation of cancer hallmarks. Most of the specific cancer hallmarks regulated by piRNAs are involved in sustaining proliferative signaling, resistance to cell death or apoptosis, and activation of invasion and metastasis. Additionally, piRNAs have been used as biomarkers for cancer diagnosis and prognosis and have great potential for clinical utility. However, research on the underlying mechanisms of piRNAs in cancer is limited. Here, we systematically reviewed recent advances in the biogenesis and biological functions of piRNAs and relevant bioinformatics databases with the aim of providing insights into cancer diagnosis and clinical applications. We also focused on some cancer hallmarks rarely reported to be related to piRNAs, which can promote in-depth research of piRNAs in molecular biology and facilitate their clinical translation into cancer treatment.


2017 ◽  
pp. 109-132
Author(s):  
Leena Rawal ◽  
Deepak Panwar ◽  
Sher Ali

Biotechnology ◽  
2019 ◽  
pp. 84-119
Author(s):  
Icxa Khandelwal ◽  
Aditi Sharma ◽  
Pavan Kumar Agrawal ◽  
Rahul Shrivastava

Various biological databases are available online, which are classified based on various criteria for ease of access and use. All such bioinformatics database resources have been discussed in brief in this book chapter. The major focus is on most commonly used biological/bioinformatics databases. The authors provide an overview of the information provided and analysis done by each database, information retrieval system and formats available, along with utility of the database to its users. Most widely used databases have been covered in detail so as to enhance readers' understanding. This chapter will serve as a guide to those who are new to the field of bioinformatics database resources, or wish to have consolidated information on various bioinformatics databases available.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Satoshi Yokoyama ◽  
Yasuhiro Sugimoto ◽  
Chihiro Nakagawa ◽  
Kouichi Hosomi ◽  
Mitsutaka Takada

Abstract Cardiac glycosides, such as digoxin, inhibit Na+/K+-ATPases and cause secondary activation of Na+/Ca2+ exchangers. Preclinical investigations have suggested that digoxin may have anticancer properties. In order to clarify the functional mechanisms of digoxin in cancer, we performed an integrative analysis of clinical and bioinformatics databases. The US Food and Drug Administration Adverse Event Reporting System and the Japan Medical Data Center claims database were used as clinical databases to evaluate reporting odds ratios and adjusted sequence ratios, respectively. The BaseSpace Correlation Engine and Connectivity Map bioinformatics databases were used to investigate molecular pathways related to digoxin anticancer mechanisms. Clinical database analyses suggested an inverse association between digoxin and four cancers: gastric, colon, prostate and haematological malignancy. The bioinformatics database analysis suggested digoxin may exert an anticancer effect via peroxisome proliferator-activated receptor α and apoptotic caspase cascade pathways. Our integrative analysis revealed the possibility of digoxin as a drug repositioning candidate for cancers.


Genes ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 340
Author(s):  
Tanuka Sen ◽  
Naresh K. Verma

Shigella flexneri is the principal cause of bacillary dysentery, contributing significantly to the global burden of diarrheal disease. The appearance and increase in the multi-drug resistance among Shigella strains, necessitates further genetic studies and development of improved/new drugs against the pathogen. The presence of an abundance of hypothetical proteins in the genome and how little is known about them, make them interesting genetic targets. The present study aims to carry out characterization of the hypothetical proteins present in the genome of a newly emerged serotype of S. flexneri (strain Y394), toward their novel regulatory functions using various bioinformatics databases/tools. Analysis of the genome sequence rendered 4170 proteins, out of which 721 proteins were annotated as hypothetical proteins (HPs) with no known function. The amino acid sequences of these HPs were evaluated using a combination of latest bioinformatics tools based on homology search against functionally identified proteins. Functional domains were considered as the basis to infer the biological functions of HPs in this case and the annotation helped in assigning various classes to the proteins such as signal transducers, lipoproteins, enzymes, membrane proteins, transporters, virulence, and binding proteins. This study contributes to a better understanding of growth, survival, and disease mechanism at molecular level and provides potential new targets for designing drugs against Shigella infection.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Guoju Hong ◽  
Xiaorui Han ◽  
Wei He ◽  
Jiake Xu ◽  
Ping Sun ◽  
...  

AbstractSerum miRNAs are potential biomarkers for predicting the progress of bone diseases, but little is known about miRNAs in alcohol-induced osteonecrosis of femoral head (AIONFH). This study evaluated disease-prevention value of specific serum miRNA expression profiles in AIONFH. MiRNA PCR Panel was taken to explore specific miRNAs in serum of AIONFH cases. The top differentially miRNAs were further validated by RT-qPCR assay in serum and bone tissues of two independent cohorts. Their biofunction and target genes were predicted by bioinformatics databases. Target genes related with angiogenesis and osteogenesis were quantified by RT-qPCR in necrotic bone tissue. Our findings demonstrated that multiple miRNAs were evaluated to be differentially expressed with high dignostic values. MiR-127-3p, miR-628-3p, and miR-1 were downregulated, whereas miR-885-5p, miR-483-3p, and miR-483-5p were upregulated in serum and bone samples from the AIONFH patients compared to those from the normal control individuals (p < 0.01). The predicted target genes of the indicated miRNAs quantified by qRT-PCR, including IGF2, PDGFA, RUNX2, PTEN, and VEGF, were presumed to be altered in necrotic bone tissue of AIONFH patients. The presence of five altered miRNAs in AIONFH patients may serve as non-invasive biomarkers and potential therapeutic targets for the early diagnosis of AIONFH.


Sign in / Sign up

Export Citation Format

Share Document