Tryptophanase Activity on D-Tryptophan

Author(s):  
Akihiko Shimada ◽  
Noriko Fujii ◽  
Takeshi Saito
2009 ◽  
Vol 191 (17) ◽  
pp. 5369-5376 ◽  
Author(s):  
Young-Man Kwon ◽  
Bernard Weiss

ABSTRACT When Escherichia coli K-12 is grown anaerobically in medium containing tryptophan and sodium nitrate, it produces red compounds. The reaction requires functional genes for trytophanase (tnaA), a tryptophan permease (tnaB), and a nitrate reductase (narG), as well as a natural drop in the pH of the culture. Mass spectrometry revealed that the purified chromophores had mass/charge ratios that closely match those for indole red, indoxyl red, and an indole trimer. These compounds are known products of chemical reactions between indole and nitrous acid. They are derived from an initial reaction of 3-nitrosoindole with indole. Apparently, nitrite that is produced from the metabolic reduction of nitrate is converted in the acid medium to nitrous acid, which leads to the nitrosation of the indole that is generated by tryptophanase. An nfi (endonuclease V) mutant and a recA mutant were selectively killed during the period of chromophore production, and a uvrA strain displayed reduced growth. These effects depended on the addition of nitrate to the medium and on tryptophanase activity in the cells. Unexpectedly, the killing of a tnaA + nfi mutant was not accompanied by marked increases in mutation frequencies for several traits tested. The vulnerability of three DNA repair mutants indicates that a nitrosoindole or a derivative of a nitrosoindole produces lethal DNA damage.


1955 ◽  
Vol 69 (5) ◽  
pp. 584-589 ◽  
Author(s):  
William L. Boyd ◽  
Herman C. Lichstein

Science ◽  
2020 ◽  
Vol 369 (6510) ◽  
pp. 1518-1524 ◽  
Author(s):  
Lior Lobel ◽  
Y. Grace Cao ◽  
Kathrin Fenn ◽  
Jonathan N. Glickman ◽  
Wendy S. Garrett

Associations between chronic kidney disease (CKD) and the gut microbiota have been postulated, yet questions remain about the underlying mechanisms. In humans, dietary protein increases gut bacterial production of hydrogen sulfide (H2S), indole, and indoxyl sulfate. The latter are uremic toxins, and H2S has diverse physiological functions, some of which are mediated by posttranslational modification. In a mouse model of CKD, we found that a high sulfur amino acid–containing diet resulted in posttranslationally modified microbial tryptophanase activity. This reduced uremic toxin–producing activity and ameliorated progression to CKD in the mice. Thus, diet can tune microbiota function to support healthy host physiology through posttranslational modification without altering microbial community composition.


1971 ◽  
Vol 123 (3) ◽  
pp. 355-365 ◽  
Author(s):  
S. A. M. Khairul Bashar ◽  
J. H. Parish ◽  
Marjorie Brown

1. Polyribosomes were isolated from Escherichia coli grown in media in which tryptophanase is induced and in which it is repressed. The polyribosomes from the induced bacteria had a small amount of tryptophanase activity associated with them. 2. A portion of the enzyme activity remained bound to polyribosomes during centrifuging in sucrose gradients. 3. Incubation of tryptophanase-containing polyribosomes with puromycin released enzyme activity. 4. The binding of the enzyme to the polyribosomes did not depend on the presence of DNA. 5. When the polyribosomes were incubated under conditions of protein synthesis with supernatant fraction obtained from repressed bacteria, a small but statistically significant increase in enzyme activity was produced. 6. When a radioactive amino acid was included in the incubation mixture for the tryptophanase system a radioactive protein was obtained whose chromatographic, electrophoretic and sedimentation properties were identical with those of tryptophanase. 7. The amount of incorporation was consistent with the amount of new enzyme synthesis predicted by the increase in enzyme activity. Both radioactive incorporation and increase in enzyme activity were shown to be energy-dependent and also negative controls were obtained by using zero-time incubations or polyribosomes isolated from either repressed cells or a mutant lacking the ability to produce tryptophanase. 8. The distribution of radioactive leucine in the carboxyl region of the newly labelled tryptophanase was examined by digesting the labelled protein with carboxypeptidases. It was shown that the radioactivity was more highly concentrated towards the carboxyl terminus when the incubation times for protein synthesis were shorter (implying that, with longer incubation times, longer lengths of polypeptide chain contained radioactive amino acid residues).


2002 ◽  
Vol 48 (2) ◽  
pp. 132-137 ◽  
Author(s):  
P Di Martino ◽  
A Merieau ◽  
R Phillips ◽  
N Orange ◽  
C Hulen

Escherichia coli adherence to biotic and abiotic surfaces constitutes the first step of infection by promoting colonization and biofilm formation. The aim of this study was to gain a better understanding of the relationship between E. coli adherence to different biotic surfaces and biofilm formation on abiotic surfaces. We isolated mutants defective in A549 pneumocyte cells adherence, fibronectin adherence, and biofilm formation by random transposition mutagenesis and sequential passages over A549 cell monolayers. Among the 97 mutants tested, 80 were decreased in biofilm formation, 8 were decreased in A549 cells adherence, 7 were decreased in their adherence to fibronectin, and 17 had no perturbations in either of the three phenotypes. We observed a correlation between adherence to fibronectin or A549 cells and biofilm formation, indicating that biotic adhesive factors are involved in biofilm formation by E. coli. Molecular analysis of the mutants revealed that a transposon insertion in the tnaA gene encoding for tryptophanase was associated with a decrease in both A549 cells adherence and biofilm formation by E. coli. The complementation of the tnaA mutant with plasmid-located wild-type tnaA restored the tryptophanase activity, epithelial cells adherence, and biofilm formation on polystyrene. The possible mechanism of tryptophanase involvement in E. coli adherence and biofilm formation is discussed.Key words: Escherichia coli, biofilm, adherence, A549 cells, fibronectin, tryptophanase.


Sign in / Sign up

Export Citation Format

Share Document