DESIGN OF SOLAR HEATING SYSTEM FOR WINTER HEATING OF BUILDINGS (A CASE STUDY)

Author(s):  
J.S. Saini ◽  
R.K. Mehrotra ◽  
C.P. Gupta
Keyword(s):  
1989 ◽  
Vol 7 (2) ◽  
pp. 85-91 ◽  
Author(s):  
M. A. HAMDAN ◽  
S. M. HABALI ◽  
B. A. JUBRAN

2019 ◽  
Vol 11 (15) ◽  
pp. 4167 ◽  
Author(s):  
Anna Bać ◽  
Magdalena Nemś ◽  
Artur Nemś ◽  
Jacek Kasperski

When designing a year-round home heating system that uses only solar radiation energy, the cooperation of an architect and an HVAC (heating, ventilation, and air conditioning) designer is necessary. These systems occupy a large area in relation to a building’s floor surface, especially when they are located in a climate like Central Europe or colder. The aim of the article was to create a balanced integration process by implementing the subsequent steps that are necessary to integrate a solar heating system within a building. In the first stage, a solar collector and a heat accumulator were selected. The innovation of the system involves the use of a solar concentrating collector as an air heater. Assessment criteria were then proposed in order to show the influence of the location of the solar heating system on the building’s architecture, functionality, and energy balance, while at the same time assuming its passive standard. System integrations concerning both an existing and new building were analyzed. The system’s basic components were selected for the three chosen solutions, taking into account the possibility of using heat losses resulting from the location of the installation.


2008 ◽  
Vol 130 (11) ◽  
Author(s):  
Ke Xing ◽  
Martin Belusko

Product upgrade, achieved through the improvement of the functionality of reused or remanufactured products, is often accepted as an effective way to attain a competitive reutilization. Design for upgradability (DFU) is a tool that primarily focuses on enhancing a product’s functional as well as physical fitness for ease of upgrade. This paper presents the development of a novel approach and its implementation algorithm for a systematic design of product upgradability. The framework of this approach consists of two major phases––modeling and optimization. Fuzzy logic is used as a tool to facilitate the modeling of a product’s upgradability based on its technical characteristics and the reutilization mode. In the optimization phase, a new DFU optimization program is developed by using genetic algorithm techniques. The objective of a product’s DFU optimization is defined so as to configure/redesign a product for the maximal level of upgradability with minimal associated costs and violations of engineering, economic, and environmental constraints. A case study on a solar heating system is presented to demonstrate the application of the proposed DFU algorithm and its effectiveness in generating optimal configurations for the system, which are reflected as significant improvements in the system’s upgradability, cost efficiency, and overall functionality.


2019 ◽  
Vol 50 (7) ◽  
pp. 659-670 ◽  
Author(s):  
Jieyuan Yang ◽  
Jinping Li ◽  
Rong Feng

Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3877 ◽  
Author(s):  
F. Javier Batlles ◽  
Bartosz Gil ◽  
Svetlana Ushak ◽  
Jacek Kasperski ◽  
Marcos Luján ◽  
...  

An important element of a solar installation is the storage tank. When properly selected and operated, it can bring numerous benefits. The presented research relates to a project that is implemented at the Solar Energy Research Center of the University of Almeria in Spain. In order to improve the operation of the solar cooling and heating system of the Center, it was upgraded with two newly designed storage tanks filled with phase change materials (PCM). As a result of design works, commercial material S10 was selected for the accumulation of cold, and S46 for the accumulation of heat, in an amount of 85% and 15%, respectively. The article presents in detail the process of selecting the PCM material, designing the installation, experimental research, and exergy analysis. Individual tasks were carried out by research groups cooperating under the PCMSOL EUROPEAN PROJECT. Results of tests conducted on the constructed installation indicate that daily energy saving when using a solar chiller with PCM tanks amounts to 40% during the cooling season.


2012 ◽  
Vol 512-515 ◽  
pp. 130-136
Author(s):  
Keh Chin Chang ◽  
Wei Min Lin ◽  
Yi Mei Liu ◽  
Tsong Sheng Lee ◽  
Kung Ming Chung

The total area of solar collectors installed in Taiwan had exceeded 2 million square meters by the end of 2010. However, there were only 98 systems in operation with area of solar collectors installed exceeding 100 square meters from 2001 to 2010. To increase industrial awareness of solar water heating technologies, a nursery greenhouse was chosen as the case study to evaluate its thermal performance throughout the months of May 2010 to April 2011. The results showed that the solar energy collected and heat loss during the night hours would affect the thermal efficiency, economic viability and attractiveness of a SWH. This study would provide useful information for all parties related to this market, manufacturers, potential users and policy-makers.


2015 ◽  
Vol 121 ◽  
pp. 1356-1364 ◽  
Author(s):  
Tao Li ◽  
Yanfeng Liu ◽  
Dengjia Wang ◽  
Kaifeng Shang ◽  
Jiaping Liu

Sign in / Sign up

Export Citation Format

Share Document