Electrochemiluminescent Sensing for the Investigation of the Binding Modes of Anticancer, Antiviral Agents

1994 ◽  
pp. 24-25
Author(s):  
Yoshihito Ikariyama ◽  
Eiry Kobatake ◽  
Masuo Aizawa
2018 ◽  
Vol 5 (2) ◽  
pp. 5-8
Author(s):  
Jyothi Achuthanandhan ◽  
Baskar Lakshmanan

In an attempt to find potential antiviral agents, a series of pyrazolones (PA1-PA6& PC1-PC6) were designed and evaluated for their  DENVNS5 (RNA-dependent RNA polymerase) inhibitory activity. Molecular docking studies of all the designed compounds into the binding site of DENVNS5 (PDB Code: 4C11) were performed to gain a comprehensive understanding into rational binding modes. These compounds were also screened for in silico drug-likeliness properties on the basis of the absorption, distribution, metabolism and excretion (ADME) prediction. Among all the synthesized compounds, analogue  PA6showed superior inhibitory activity against RNA dependent RNA polymerase. SAR  study indicated that the presence of an electron withdrawing substitution on pyrazolone derivatives significantly improves its binding interaction with the protein.Results of ADME prediction revealed that most of these compounds showed in silico drug-likeliness.


Author(s):  
Cesar Mendoza-Martinez ◽  
Alejandro Rodriguez-Lezama

An in-silico drug repurposing study was carried out to search for potential COVID-19 antiviral agents. A dataset of 1615 FDA-approved drugs was docked in the active site of SARS CoV-2 Main protease. A subset of the top scoring hit compounds was subjected to follow-up molecular dynamics simulations to further characterise the predicted binding modes. The main findings are that the drugs Aliskiren, Capreomycin, Isovuconazonium, emerge as novel potential inhibitors. We also observed that Ceftolozane, Cobicistat, Carfilzomib and Saquinavir are well-ranked by our protocol, in agreement with other recent in silico drug repurposing studies, however MD simulations shows only potential for the three first, as Saquinavir exhibited an unstable binding mode. As many HIV-protease inhibitors has been reported as active and not active, Atazanavir and Lopinavir were included in the data set in order to rationalize the findings. In addition, our protocol ranked favourably Dronedarone suggesting that this recently reported SARS-CoV-2 inhibitor targets SARS-CoV-2 Main protease.


2020 ◽  
Author(s):  
Cesar Mendoza-Martinez ◽  
Alejandro Rodriguez-Lezama

An in-silico drug repurposing study was carried out to search for potential COVID-19 antiviral agents. A dataset of 1615 FDA-approved drugs was docked in the active site of SARS CoV-2 Main protease. A subset of the top scoring hit compounds was subjected to follow-up molecular dynamics simulations to further characterise the predicted binding modes. The main findings are that the drugs Aliskiren, Capreomycin, Isovuconazonium, emerge as novel potential inhibitors. We also observed that Ceftolozane, Cobicistat, Carfilzomib and Saquinavir are well-ranked by our protocol, in agreement with other recent in silico drug repurposing studies, however MD simulations shows only potential for the three first, as Saquinavir exhibited an unstable binding mode. As many HIV-protease inhibitors has been reported as active and not active, Atazanavir and Lopinavir were included in the data set in order to rationalize the findings. In addition, our protocol ranked favourably Dronedarone suggesting that this recently reported SARS-CoV-2 inhibitor targets SARS-CoV-2 Main protease.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1759
Author(s):  
Essa M. Saied ◽  
Yousra A. El-Maradny ◽  
Alaa A. Osman ◽  
Amira M. G. Darwish ◽  
Hebatallah H. Abo Nahas ◽  
...  

In 2019, the world suffered from the emergence of COVID-19 infection, one of the most difficult pandemics in recent history. Millions of confirmed deaths from this pandemic have been reported worldwide. This disaster was caused by SARS-CoV-2, which is the last discovered member of the family of Coronaviridae. Various studies have shown that natural compounds have effective antiviral properties against coronaviruses by inhibiting multiple viral targets, including spike proteins and viral enzymes. This review presents the classification and a detailed explanation of the SARS-CoV-2 molecular characteristics and structure–function relationships. We present all currently available crystal structures of different SARS-CoV-2 proteins and emphasized on the crystal structure of different virus proteins and the binding modes of their ligands. This review also discusses the various therapeutic approaches for COVID-19 treatment and available vaccinations. In addition, we highlight and compare the existing data about natural compounds extracted from algae, fungi, plants, and scorpion venom that were used as antiviral agents against SARS-CoV-2 infection. Moreover, we discuss the repurposing of select approved therapeutic agents that have been used in the treatment of other viruses.


1993 ◽  
Vol 14 (1-3) ◽  
pp. 725-727 ◽  
Author(s):  
Yoshihito Ikariyama ◽  
Yoshiaki Taguchi ◽  
Toshiyuki Suzawa ◽  
Eiry Kobatake ◽  
Masuo Aizawa

Planta Medica ◽  
2012 ◽  
Vol 78 (11) ◽  
Author(s):  
M Bourjot ◽  
PM Allard ◽  
MT Martin ◽  
P Leyssen ◽  
F Guéritte ◽  
...  
Keyword(s):  

Farmacist ro ◽  
2020 ◽  
Vol 3 (194) ◽  
pp. 8
Author(s):  
Cristina Daniela Marineci ◽  
Cornel Chiriţă ◽  
Emil Ștefănescu ◽  
Anca Zanfirescu ◽  
Oana-Cristina Şeremet ◽  
...  

2020 ◽  
Author(s):  
Robert Stepic ◽  
Lara Jurković ◽  
Ksenia Klementyeva ◽  
Marko Ukrainczyk ◽  
Matija Gredičak ◽  
...  

In many living organisms, biomolecules interact favorably with various surfaces of calcium carbonate. In this work, we have considered the interactions of aspartate (Asp) derivatives, as models of complex biomolecules, with calcite. Using kinetic growth experiments, we have investigated the inhibition of calcite growth by Asp, Asp2 and Asp3.This entailed the determination of a step-pinning growth regime as well as the evaluation of the adsorption constants and binding free energies for the three species to calcite crystals. These latter values are compared to free energy profiles obtained from fully atomistic molecular dynamics simulations. When using a flat (104) calcite surface in the models, the measured trend of binding energies is poorly reproduced. However, a more realistic model comprised of a surface with an island containing edges and corners, yields binding energies that compare very well with experiments. Surprisingly, we find that most binding modes involve the positively charged, ammonium group. Moreover, while attachment of the negatively charged carboxylate groups is also frequently observed, it is always balanced by the aqueous solvation of an equal or greater number of carboxylates. These effects are observed on all calcite features including edges and corners, the latter being associated with dominant affinities to Asp derivatives. As these features are also precisely the active sites for crystal growth, the experimental and theoretical results point strongly to a growth inhibition mechanism whereby these sites become blocked, preventing further attachment of dissolved ions and halting further growth.


Sign in / Sign up

Export Citation Format

Share Document