Conversion of Lignocellulosic Biomass Into Platform Chemicals for Biobased Polyurethane Application

2018 ◽  
pp. 161-213 ◽  
Author(s):  
Xumeng Ge ◽  
Chun Chang ◽  
Lu Zhang ◽  
Shaoqing Cui ◽  
Xiaolan Luo ◽  
...  
Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 364
Author(s):  
Nahyeon Lee ◽  
Yong Tae Kim ◽  
Jechan Lee

Lignin directly derived from lignocellulosic biomass has been named a promising source of platform chemicals for the production of bio-based polymers. This review discusses potentially relevant routes to produce renewable aromatic aldehydes (e.g., syringaldehyde and vanillin) from lignin feedstocks (pre-isolated lignin or lignocellulose) that are used to synthesize a range of bio-based polymers. To do this, the processes to make aromatic aldehydes from lignin with their highest available yields are first presented. After that, the routes from such aldehydes to different polymers are explored. Challenges and perspectives of the production the lignin-derived renewable chemicals and polymers are also highlighted.


Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1234
Author(s):  
Zhiwei Jiang ◽  
Di Hu ◽  
Zhiyue Zhao ◽  
Zixiao Yi ◽  
Zuo Chen ◽  
...  

Efficient conversion of renewable biomass into value-added chemicals and biofuels is regarded as an alternative route to reduce our high dependence on fossil resources and the associated environmental issues. In this context, biomass-based furfural and levulinic acid (LA) platform chemicals are frequently utilized to synthesize various valuable chemicals and biofuels. In this review, the reaction mechanism and catalytic system developed for the generation of furfural and levulinic acid are summarized and compared. Special efforts are focused on the different catalytic systems for the synthesis of furfural and levulinic acid. The corresponding challenges and outlooks are also observed.


2020 ◽  
Author(s):  
Vishnu Prasad J. ◽  
Tridweep K. Sahoo ◽  
Naveen S. ◽  
Guhan Jayaraman

Abstract BackgroundSimultaneous saccharification and fermentation (SSF) of pre-treated lignocellulosics to biofuels and other platform chemicals has long been a promising alternative to separate hydrolysis and fermentation processes. However, the disparity between the optimum conditions (temperature, pH) for fermentation and enzyme hydrolysis leads to execution of the SSF process at sub-optimal conditions, which can affect the rate of hydrolysis and cellulose conversion. The fermentation conditions could be synchronized with hydrolysis optima by carrying out the SSF at a higher temperature, but this would require a thermo-tolerant organism. Economically viable production of platform chemicals from lignocellulosic biomass has long been stymied because of the significantly higher cost of hydrolytic enzymes. The major objective of this work is to develop an SSF strategy for D- lactic acid production by a thermo-tolerant organism, in which the enzyme loading could significantly be reduced without compromising on the overall conversion. ResultsA thermo-tolerant strain of Lactobacillus bulgaricuswas developed by adaptive laboratory evolution (ALE) which enabled the SSF to be performed at 45 °C with reduced enzyme usage.Despite the reduction of enzyme loading from 15 FPU/gbiomass to 5 FPU/gbiomass, we could still achieve ~8% higher cellulose to D-LA conversion in batch SSF, in comparison to the conversion by separate enzymatic hydrolysis and fermentation processes at 45 °C and pH 5.5. Extending the batch SSF to an SSF with pulse-feeding of 5% pre-treated biomass and 5 FPU/g-biomass, at12-hour intervals (36th h – 96th h), resulted in a titer of 108 g/L D-LA and 60% conversion of cellulose to D-LA.This is one among the highest reported D-LA titers achieved from lignocellulosic biomass.ConclusionsWe have demonstrated that the SSF strategy, in conjunction with evolutionary engineering, could drastically reduce enzyme requirement and be the way forward for economical production of platform chemicals from lignocellulosics. We have shown that fed-batch SSF processes, designed with multiple pulse-feedings of the pre-treated biomass and enzyme, can be an effective way of enhancing the product concentrations.


2019 ◽  
Vol 8 (1) ◽  
pp. 20-40 ◽  
Author(s):  
Maria Ventura ◽  
Marcelo E. Domine ◽  
Marvin Chávez-Sifontes

Valorization of lignocellulosic biomass becomes a sustainable alternative against the constant depletion and environmental problems of fossil sources necessary for the production of chemicals and fuels. In this context, a wide range of renewable raw materials can be obtained from lignocellulosic biomass in both polymeric (i.e. cellulose, starch, lignin) and monomeric (i.e. sugars, polyols, phenols) forms. Lignin and its derivatives are interesting platform chemicals for industry, although mainly due to its refractory characteristics its use has been less considered compared to other biomass fractions. To take advantage of the potentialities of lignin, it is necessary to isolate it from the cellulose/ hemicellulosic fraction, and then apply depolymerization processes; the overcoming of technical limitations being a current issue of growing interest for many research groups. In this review, significant data related to the structural characteristics of different types of commercial lignins are presented, also including extraction and isolation processes from biomass, and industrial feedstocks obtained as residues from paper industry under different treatments. The review mainly focuses on the different depolymerization processes (hydrolysis, hydrogenolysis, hydrodeoxygenation, pyrolysis) up to now developed and investigated analyzing the different hydrocarbons and aromatic derivatives obtained in each case, as well as the interesting reactions some of them may undergo. Special emphasis is done on the development of new catalysts and catalytic processes for the efficient production of fuels and chemicals from lignin. The possibilities of applications for lignin and its derivatives in new industrial processes and their integration into the biorefinery of the future are also assessed.


Catalysts ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 437 ◽  
Author(s):  
Katarzyna Świątek ◽  
Stephanie Gaag ◽  
Andreas Klier ◽  
Andrea Kruse ◽  
Jörg Sauer ◽  
...  

Hydrolysis of lignocellulosic biomass is a crucial step for the production of sugars and biobased platform chemicals. Pretreatment experiments in a semi-continuous plant with diluted sulphuric acid as catalyst were carried out to measure the time-dependent formation of sugars (glucose, xylose, mannose), furfurals, and organic acids (acetic, formic, and levulinic acid) at different hydrolysis temperatures (180, 200, 220 °C) of one representative of each basic type of lignocellulose: hardwood, softwood, and grass. The addition of the acid catalyst is followed by a sharp increase in the sugar concentration. Xylose and mannose were mainly formed in the initial stages of the process, while glucose was released slowly. Increasing the reaction temperature had a positive effect on the formation of furfurals and organic acids, especially on hydroxymehtylfurfural (HMF) and levulinic acid, regardless of biomass type. In addition, large amounts of formic acid were released during the hydrolysis of miscanthus grass. Structural changes in the solid residue show a complete hydrolysis of hemicellulose at 180 °C and of cellulose at 200 °C after around 120 min reaction time. The results obtained in this study can be used for the optimisation of the hydrolysis conditions and reactor design to maximise the yields of desired products, which might be sugars or furfurals.


2016 ◽  
Vol 852 ◽  
pp. 1175-1181
Author(s):  
Lu Xia Jiang ◽  
Sheng Fang ◽  
Jian Wei Mao ◽  
Jin Hai Xie

Due to the awareness of fossil fuel depletion and global warming, biorefinery for production of biofuels and valuable platform chemicals from lignocellulosic biomass has attracted growing interest in the past decades. With the rising concept of comprehensive utilization of lignocellulosic biomass,fractionation processes are generally necessary prior to its subsequent conversion with aims to produce purified cellulose with specific recovery of hemicellulose and lignin. In this review, ionic liquids fractionation,steam explosion based fractionation,twin-screw extrusion and organosolv fractionation are described and their features and comparative performances are discussed.


2016 ◽  
Vol 18 (10) ◽  
pp. 3124-3138 ◽  
Author(s):  
Junming Xu ◽  
Xinfeng Xie ◽  
Jingxin Wang ◽  
Jianchun Jiang

Conventional thermochemical liquefaction of lignocellulosic biomass produces an unpredictable complex mixture of oxygenated products, which creates techno-economic barriers during subsequent upgrading processes.


ChemInform ◽  
2014 ◽  
Vol 45 (51) ◽  
pp. no-no
Author(s):  
Gregory Chatel ◽  
Karine De Oliveira Vigier ◽  
Francois Jerome

Sign in / Sign up

Export Citation Format

Share Document