Exercise and the Regulation of Mitochondrial Turnover

Author(s):  
David A. Hood ◽  
Liam D. Tryon ◽  
Anna Vainshtein ◽  
Jonathan Memme ◽  
Chris Chen ◽  
...  
iScience ◽  
2021 ◽  
pp. 102434
Author(s):  
Winifred W. Yau ◽  
Kiraely Adam Wong ◽  
Jin Zhou ◽  
Nivetha Kanakaram Thimmukonda ◽  
Yajun Wu ◽  
...  

2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
Aleksandr B Stotland ◽  
Jennifer Ramil ◽  
Roberta A Gottlieb

In order to study mitochondrial turnover at the level of a single mitochondrion, our laboratory has developed the MitoTimer protein. Timer is a mutant of DsRed fluorescent protein developed by Terskikh et al. The Timer protein transitions from green fluorescence to a more stable red conformation as it matures over a span of 48 h. Furthermore, the protein is very stable under physiological conditions, insensitive to variations in ionic strength, and changes in pH between 7.0 and 8.0. Notably, Timer maturation from green to red is significantly slowed in deoxygenated buffer, suggesting that molecular oxygen plays a part in fluorophore maturation. We fused the Timer protein with the mitochondrial signal sequence from the cytochrome c oxidase subunit VIII (COX8) to target the protein to the inner membrane of the mitochondria, and further cloned the protein into a construct with a cardiac-restricted α-myosin heavy chain promoter. This construct was used to create the α-MHC MitoTimer mice. Surprisingly, initial analysis of the hearts from these mice reveals a remarkable degree of heterogeneity in the ratio of red-to- green fluorescence of MitoTimer in cardiac tissue. Furthermore, individual mitochondria within cardiomyocytes display a higher red-to-green fluorescence, implying a block in import of newly synthesized MitoTimer that would be caused by the lack of a high membrane potential, indicative of older, dysfunctional mitochondria. Initial studies suggest that these mice represent an elegant tool for the investigation of mitochondrial turnover in the heart.


2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Christine A Thornton ◽  
Allen M Andres ◽  
Genaro Hernandez ◽  
Jon Sin ◽  
Roberta Gottlieb

Fluorescent Timer, or DsRed1-E5, is a mutant of the red fluorescent protein, dsRed, developed by Terskikh and colleagues. Its fluorescence shifts over time from green to red as the protein matures. This molecular clock gives temporal and spatial information on protein turnover. To visualize mitochondrial turnover, we targeted Timer to the mitochondrial matrix with a mitochondrial targeting sequence (coined “MitoTimer”) and cloned it into a tetracycline-inducible promoter construct to regulate its expression. Here we report characterization of this novel fluorescent reporter for mitochondrial dynamics. Tet-On HEK 293 cells were transfected with pTRE-tight-MitoTimer and induced production with doxycycline. Mitochondrial distribution was demonstrated by fluorescence microscopy and verified by subcellular fractionation and western blot analysis. Doxycycline addition for as little as 1hr was sufficient to label mitochondria. MitoTimer was detected as early as 4hr following doxycycline addition, and persisted in mitochondria for at least 72hr. The color-specific conformation of MitoTimer was stable after fixation with 4% paraformaldehyde. MitoTimer matured to red fluorescence within 48hr, at which time a second pulse of doxycycline induced expression of green (immature) MitoTimer which was selectively incorporated into a subset of mitochondria actively engaged in protein import. The extent of new protein incorporation during a second pulse was increased under conditions of mito-biogenesis and reduced if mitochondrial membrane potential was dissipated. We conclude that MitoTimer can be used to monitor mitophagy and biogenesis.


2011 ◽  
Vol 109 (suppl_1) ◽  
Author(s):  
Allen M Andres ◽  
Chengqun Huang ◽  
Eric P Ratliff ◽  
Genaro Hernandez ◽  
Pamela Lee ◽  
...  

Autophagy-dependent mitochondrial turnover in response to cellular stress is necessary for maintaining cellular homeostasis. However, the mechanisms that govern the selective targeting of damaged mitochondria are poorly understood. Parkin, an E3 ubiquitin ligase, has been shown to be essential for the selective clearance of damaged mitochondria. Parkin is expressed in the heart, yet its function has not been investigated in the context of cardioprotection. We previously reported that autophagy is required for cardioprotection by ischemic preconditioning (IPC). In the present study, we used simulated ischemia in vitro and IPC in hearts (in vivo and ex vivo) to investigate the role of Parkin in mediating cardioprotection. In HL-1 cells, simulated ischemia induced Parkin translocation to mitochondria and mitochondrial elimination. Mitochondrial loss was blunted in Atg5-deficient cells, revealing the requirement for autophagy in mitochondrial elimination. Consistent with previous reports implicating p62/SQSTM1 in mitophagy, we found that downregulation of p62 attenuated mitophagy and exacerbated cell death in HL-1 cardiomyocytes subjected to simulated ischemia. While wild type mice showed p62 translocation to mitochondria after IPC, Parkin knockout mice exhibited attenuated translocation of p62 to mitochondria. Importantly, ablation of Parkin in mice abolished the cardioprotective effects of IPC. These results reveal for the first time the crucial role of Parkin and mitophagy in cardioprotection.


Author(s):  
Liam D. Tryon ◽  
Anna Vainshtein ◽  
Jonathan Memme ◽  
Matthew J. Crilly ◽  
David A. Hood

2017 ◽  
Vol 178 ◽  
pp. 157-174 ◽  
Author(s):  
Konstantinos Palikaras ◽  
Ioanna Daskalaki ◽  
Maria Markaki ◽  
Nektarios Tavernarakis

2014 ◽  
Vol 69 (7) ◽  
pp. 810-820 ◽  
Author(s):  
Z. Y. Tam ◽  
J. Gruber ◽  
L. F. Ng ◽  
B. Halliwell ◽  
R. Gunawan

Sign in / Sign up

Export Citation Format

Share Document