Computational prediction and experimental selectivity coefficients for hydroxyzine and cetirizine molecularly imprinted polymer based potentiometric sensors

2014 ◽  
Vol 812 ◽  
pp. 184-190 ◽  
Author(s):  
Abolfazl Azimi ◽  
Mehran Javanbakht
2021 ◽  
Author(s):  
Chan Wang ◽  
Longbin Qi ◽  
Rongning Liang

Polymeric membrane potentiometric sensors based on molecularly imprinted polymer (MIP) have been successfully designed for detection of organic compounds both in ionic and neutral forms. However, most of these sensors...


2020 ◽  
Vol 16 (6) ◽  
pp. 788-794 ◽  
Author(s):  
Atsuko Konishi ◽  
Shigehiko Takegami ◽  
Tatsuya Kitade

Objective: Molecularly Imprinted Polymer (MIP)-modified potentiometric sensors for histamine (HIS) (as denoted as HIS sensor) have been developed. Methods: The MIPs comprise HIS, Methacrylic Acid (MAA) and ethylene glycol dimethacrylate as the template molecule, functional monomer and cross-linker, respectively. To examine the specificity of the MIP to HIS, the MIP particles were prepared with varying ratios of HIS: MAA and the HIS binding amount toward the MIP particles was determined by UV spectrophotometry. Furthermore, to quantitatively determine the ability of MIP (H2M20) to HIS, a HIS sensor was measured using Ag/AgCl as a reference electrode. Results: MIP particles having a HIS:MAA of 2 mmol:20 mmol (MIP (H2M20)) had the largest HIS binding amount among the MIP particles prepared. Additionally, MIP (H2M20) displayed a HIS binding amount approximately two times larger than the corresponding non-imprinted polymer (NIP) particles in the absence of template. The HIS sensor potential change increased as a function of HIS concentration and exhibited a near-Nernstian response of −25.7 mV decade−1 over the HIS concentration range of 1×10−5 to 1×10−4 mol L−1 with a limit of detection of 9.6×10−6 mol L−1. From the Nernstian response value, it was observed that the HIS sensor could detect the di-protonated HIS binding to the MIP. Conversely, when comparing at the same HIS concentration, the potential response value of the sensors fabricated using NIP particles were significantly smaller than the values of the corresponding HIS sensor. Conclusion: The MIP-modified potentiometric sensors can potentially be employed as an analytical method to quantitatively determine various analytes.


2019 ◽  
Vol 15 (3) ◽  
pp. 251-257
Author(s):  
Bahareh Sadat Yousefsani ◽  
Seyed Ahmad Mohajeri ◽  
Mohammad Moshiri ◽  
Hossein Hosseinzadeh

Background:Molecularly imprinted polymers (MIPs) are synthetic polymers that have a selective site for a given analyte, or a group of structurally related compounds, that make them ideal polymers to be used in separation processes.Objective:An optimized molecularly imprinted polymer was selected and applied for selective extraction and analysis of clozapine in rat brain tissue.Methods:A molecularly imprinted solid-phase extraction (MISPE) method was developed for preconcentration and cleanup of clozapine in rat brain samples before HPLC-UV analysis. The extraction and analytical process was calibrated in the range of 0.025-100 ppm. Clozapine recovery in this MISPE process was calculated between 99.40 and 102.96%. The limit of detection (LOD) and the limit of quantification (LOQ) of the assay were 0.003 and 0.025 ppm, respectively. Intra-day precision values for clozapine concentrations of 0.125 and 0.025 ppm were 5.30 and 3.55%, whereas inter-day precision values of these concentrations were 9.23 and 6.15%, respectively. In this study, the effect of lipid emulsion infusion in reducing the brain concentration of drug was also evaluated.Results:The data indicated that calibrated method was successfully applied for the analysis of clozapine in the real rat brain samples after administration of a toxic dose to animal. Finally, the efficacy of lipid emulsion therapy in reducing the brain tissue concentration of clozapine after toxic administration of drug was determined.Conclusion:The proposed MISPE method could be applied in the extraction and preconcentration before HPLC-UV analysis of clozapine in rat brain tissue.


Sign in / Sign up

Export Citation Format

Share Document