scholarly journals Temperature and high strain rate dependence of tensile deformation behavior in single-crystal iron from dislocation dynamics simulations

2014 ◽  
Vol 70 ◽  
pp. 123-129 ◽  
Author(s):  
Meijie Tang ◽  
Jaime Marian
2012 ◽  
Vol 86 (24) ◽  
Author(s):  
R. F. Smith ◽  
R. W. Minich ◽  
R. E. Rudd ◽  
J. H. Eggert ◽  
C. A. Bolme ◽  
...  

2017 ◽  
Vol 31 (16-19) ◽  
pp. 1744014
Author(s):  
M. Li ◽  
Q. W. Jiang

Tensile deformation behavior of ultrafine-grained (UFG) copper processed by accumulative roll-bonding (ARB) was studied under different strain rates at room temperature. It was found that the UFG copper under the strain rate of 10[Formula: see text] s[Formula: see text] led to a higher strength (higher flow stress level), flow stability (higher stress hardening rate) and fracture elongation. In the fracture surface of the sample appeared a large number of cleavage steps under the strain rate of 10[Formula: see text] s[Formula: see text], indicating a typical brittle fracture mode. When the strain rate is 10[Formula: see text] or 10[Formula: see text] s[Formula: see text], a great amount of dimples with few cleavage steps were observed, showing a transition from brittle to plastic deformation with increasing strain rate.


2012 ◽  
Vol 562-564 ◽  
pp. 688-692 ◽  
Author(s):  
Deng Yue Sun ◽  
Jing Li ◽  
Fu Cheng Zhang ◽  
Feng Chao Liu ◽  
Ming Zhang

The influence of the strain rate on the plastic deformation of the metals was significant during the high strain rate of loading. However, it was very difficult to obtain high strain rate data (≥ 104 s-1) by experimental techniques. Therefore, the finite element method and iterative method were employed in this study. Numerical simulation was used to characterise the deformation behavior of Hadfield steel during explosion treatment. Base on experimental data, a modified Johnson-Cook equation for Hadfield steel under various strain rate was fitted. The development of two field variables was quantified during explosion hardening: equivalent stress and strain rates.


Metals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1153
Author(s):  
Ping Song ◽  
Wen-Bin Li ◽  
Yu Zheng ◽  
Jiu-Peng Song ◽  
Xiang-Cao Jiang ◽  
...  

This study investigated the deformation behavior of the Mo-10Ta alloy with a strain rate range of 102–105 s−1. The Split Hopkinson pressure bar (SHPB) experiments were conducted to investigate the influence of deformation conditions on the stress-strain relationship and strain rate sensitivity of the material within a strain rate range of 0.001–4500 s−1. The Shaped Charge Jet (SCJ) forming experiments under detonation loading was conducted to clarify the dynamic response and microstructure evolution of the material within an ultra-high strain rates range of 104–105 s−1. Based on the stress-strain relationship of Mo-10Ta alloy at high temperature (286–873 K) and high strain rate (460–4500 s−1), the influence of temperature and strain rate on the activation energy Q was analyzed. The results indicate that the material strain rate sensitivity increased with the increase in strain rate and strain. Meanwhile, the activation energy Q decreased as the temperature and strain rate increased. The plasticity of the Mo-10Ta alloy under the condition of SCJ forming was substantially enhanced compared with that under quasi-static deformation. The material grain was also refined under ultra-high strain rate, as reflected by the reduction in grain size from 232 μm to less than 10 μm.


MRS Advances ◽  
2020 ◽  
Vol 5 (33-34) ◽  
pp. 1723-1730
Author(s):  
J. M. De Sousa ◽  
C. F. Woellner ◽  
L. D. Machado ◽  
P. A. S. Autreto ◽  
D. S. Galvao

ABSTRACTNew forms of carbon-based materials have received great attention, and the developed materials have found many applications in nanotechnology. Interesting novel carbon structures include the carbon peapods, which are comprised of fullerenes encapsulated within carbon nanotubes. Peapod-like nanostructures have been successfully synthesized, and have been used in optical modulation devices, transistors, solar cells, and in other devices. However, the mechanical properties of these structures are not completely elucidated. In this work, we investigated, using fully atomistic molecular dynamics simulations, the deformation of carbon peapods under high-strain rate conditions, which are achieved by shooting the peapods at ultrasonic velocities against a rigid substrate. Our results show that carbon peapods experience large deformation at impact, and undergo multiple fracture pathways, depending primarily on the relative orientation between the peapod and the substrate, and the impact velocity. Observed outcomes include fullerene ejection, carbon nanotube fracture, fullerene, and nanotube coalescence, as well as the formation of amorphous carbon structures.


Sign in / Sign up

Export Citation Format

Share Document