Preclinical safety and efficacy models for pulmonary drug delivery of antimicrobials with focus on in vitro models

2015 ◽  
Vol 85 ◽  
pp. 44-56 ◽  
Author(s):  
Marius Hittinger ◽  
Jenny Juntke ◽  
Stephanie Kletting ◽  
Nicole Schneider-Daum ◽  
Cristiane de Souza Carvalho ◽  
...  
Author(s):  
Kavitha K ◽  
Asha S ◽  
Hima Bindu T.V.L ◽  
Vidyavathi M

The safety and efficacy of a drug is based on its metabolism or metabolite formed. The metabolism of drugs can be studied by different in vitro models, among which microbial model became popular. In the present study, eight microbes were screened for their ability to metabolize phenobarbital in a manner comparable to humans with a model to develop alternative systems to study human drug metabolism. Among the different microbes screened, a filamentous fungi Rhizopus stolonifer metabolized phenobarbital to its metabolite which is used for further pharmacological and toxicological studies. The transformation of phenobarbital was identified by high- performance liquid chromatography (HPLC). Interestingly, Rhizopus stolonifer sample showed an extra metabolite peak at 3.11min. compared to its controls. The influence of different carbon sources in media used for growth of fungus, on metabolite production was studied, to find its effect in production of metabolite as the carbon source may influence the growth of the cell.


2020 ◽  
Vol 10 (2) ◽  
pp. 149-163
Author(s):  
Atul Jain ◽  
Teenu Sharma ◽  
Sumant Saini ◽  
Om Prakash Katare ◽  
Vandana. Soni ◽  
...  

Cancer, a complex series of diseased conditions, contributes to a significant health problem and is a leading cause of mortalities across the world. Lately, with the advent of improved diagnostics and imaging techniques, and newer advanced oral chemotherapeutics; millions of cancer affected people can lengthen their life span. Despite all the challenges associated with an active chemotherapeutic molecule like microenvironment and the intestinal barrier of the gastrointestinal tract (GIT) etc., the oral delivery remains the most acceptable route of drug administration. In this regard, nanotechnology has played a significant role in the counteracting the challenges encountered with newly developed molecules and aiding in improving their bioavailability and targetability to the tumour site, while administering through the oral route. Several literature instances document the usage of nanostructured drug delivery systems such as lipid-based, polymerbased or metallic nanomaterials to improve the efficacy of chemotherapy. Besides, sitespecific targeted surface-modified drug delivery system designed to deliver the active molecule has opened up to the newer avenues of nanotechnology. However, the issue of potential toxicity allied with nanotechnology cannot be compromised and thus, needs specific ethical regulations and guidelines. The various in vitro models have been developed to evaluate the in vitro toxicity profile which can be further correlated with the invivo model. Thus, this review provides a summarized account of the various aspects related to the role of nanotechnology in cancer therapy and various related issues thereof; that must be triumphed over to apprehend its full promise.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3295
Author(s):  
Federica Foglietta ◽  
Loredana Serpe ◽  
Roberto Canaparo

Stimuli-responsive drug-delivery systems (DDSs) have emerged as a potential tool for applications in healthcare, mainly in the treatment of cancer where versatile nanocarriers are co-triggered by endogenous and exogenous stimuli. Two-dimensional (2D) cell cultures are the most important in vitro model used to evaluate the anticancer activity of these stimuli-responsive DDSs due to their easy manipulation and versatility. However, some limitations suggest that these in vitro models poorly predict the outcome of in vivo studies. One of the main drawbacks of 2D cell cultures is their inadequate representation of the 3D environment’s physiological complexity, which sees cells interact with each other and the extracellular matrix (ECM) according to their specific cellular organization. In this regard, 3D cancer models are a promising approach that can overcome the main shortcomings of 2D cancer cell cultures, as these in vitro models possess many peculiarities by which they mimic in vivo tumors, including physiologically relevant cell–cell and cell–ECM interactions. This is, in our opinion, even more relevant when a stimuli-responsive DDS is being investigated. In this review, we therefore report and discuss endogenous and exogenous stimuli-responsive DDSs whose effectiveness has been tested using 3D cancer cell cultures.


2021 ◽  
Vol 11 (2-S) ◽  
pp. 76-81
Author(s):  
Jddtadmin Journal

Thepurpose of the study was to develop and evaluatemucoadhesive microspheres of Budesonide for pulmonary drug delivery systemhaving prolonged residence time and sustained drug release. Microspheres were prepared by emulsificationsolvent evaporation technique using HPMC, carbopol as polymers in varying ratios. The microspheres were evaluated for its percentage yield, drug entrapment efficiency, particle size and shape, in vitro mucoadhesion study and in vitro drug release studies.The FTIR studies revealed no chemical interaction between the drug molecule and polymers and found that drug was compatible with used polymer. The mucoadhesive microspheres showed particle size, drug entrapment efficiency and yield in the ranges of148 - 164 μm, 68.0 - 85.0%and67.52 - 87.25% respectively. In vitro drug release and mucoadhesion study confirms thatformulationF5 was the best formulation as it releases 81.8 % at the end of 12 hr. in controlled manner and percentage mucoadhesion of 75.2 % after 10 hr. This confirms the developed budesonidemucoadhesive microspheres are promising for pulmonary drug delivery system.   Keywords: Budesonide, Mucoadhesion, Microspheres, Drug entrapment efficiency.


2018 ◽  
Vol 273 ◽  
pp. 108-130 ◽  
Author(s):  
Hassan Pezeshgi Modarres ◽  
Mohsen Janmaleki ◽  
Mana Novin ◽  
John Saliba ◽  
Fatima El-Hajj ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document