In Vitro/In VivoComparisons in Pulmonary Drug Delivery

2008 ◽  
Vol 21 (1) ◽  
pp. 77-84 ◽  
Author(s):  
Stephen P. Newman ◽  
Hak-Kim Chan
2015 ◽  
Vol 85 ◽  
pp. 44-56 ◽  
Author(s):  
Marius Hittinger ◽  
Jenny Juntke ◽  
Stephanie Kletting ◽  
Nicole Schneider-Daum ◽  
Cristiane de Souza Carvalho ◽  
...  

2021 ◽  
Vol 11 (2-S) ◽  
pp. 76-81
Author(s):  
Jddtadmin Journal

Thepurpose of the study was to develop and evaluatemucoadhesive microspheres of Budesonide for pulmonary drug delivery systemhaving prolonged residence time and sustained drug release. Microspheres were prepared by emulsificationsolvent evaporation technique using HPMC, carbopol as polymers in varying ratios. The microspheres were evaluated for its percentage yield, drug entrapment efficiency, particle size and shape, in vitro mucoadhesion study and in vitro drug release studies.The FTIR studies revealed no chemical interaction between the drug molecule and polymers and found that drug was compatible with used polymer. The mucoadhesive microspheres showed particle size, drug entrapment efficiency and yield in the ranges of148 - 164 μm, 68.0 - 85.0%and67.52 - 87.25% respectively. In vitro drug release and mucoadhesion study confirms thatformulationF5 was the best formulation as it releases 81.8 % at the end of 12 hr. in controlled manner and percentage mucoadhesion of 75.2 % after 10 hr. This confirms the developed budesonidemucoadhesive microspheres are promising for pulmonary drug delivery system.   Keywords: Budesonide, Mucoadhesion, Microspheres, Drug entrapment efficiency.


2019 ◽  
Author(s):  
Joscelyn C. Mejías ◽  
Krishnendu Roy

AbstractAlthough the lung is an obvious target for site-specific delivery of many therapeutics for respiratory airway diseases such as asthma, COPD, and cystic fibrosis, novel strategies are needed to avoid key physiologic barriers for efficient delivery and controlled release of therapeutics to the lungs. Specifically, deposition into the deep lung requires particles with a 1-5 µm aerodynamic diameter; however, particles with a geometric diameter less than 6 µm are rapidly cleared by alveolar macrophages. Additionally, epithelial, endothelial, and fibroblast cells prefer smaller (< 300 nm) nanoparticles for efficient endocytosis. Here we address these contradictory design requirements by using a nanoparticle-inside-microgel system (Nano-in-Microgel). Using an improved maleimide-thiol based Michael Addition during (water-in-oil) Emulsion (MADE) method, we fabricated both trypsin-responsive and neutrophil elastase-responsive polymeric Nano-in-Microgel to show the versatility of the system in easily exchanging enzyme-responsive crosslinkers for disease-specific proteases. By varying the initial macromer concentration, from 20-50 % w/v, the size distribution means ranged from 4-8 µm, enzymatic degradation of the microgels is within 30 minutes, and in vitro macrophage phagocytosis is lower for the higher % w/v. We further demonstrated that in vivo lung delivery of the multi-stage carriers through the pulmonary route yields particle retention up to several hours and followed by clearance within in naïve mice. Our results provide a further understanding of how enzymatically-degradable multi-stage polymeric carriers can be used for pulmonary drug delivery.Graphical Abstract


2011 ◽  
Vol 11 (3) ◽  
pp. 1841-1851 ◽  
Author(s):  
Chiraz Jaafar-Maalej ◽  
Véronique Andrieu ◽  
Abdelhamid Elaissari ◽  
Hatem Fessi

2015 ◽  
Vol 10 (1) ◽  
Author(s):  
Liandong Hu ◽  
Dongqian Kong ◽  
Qiaofeng Hu ◽  
Na Gao ◽  
Saixi Pang

Molecules ◽  
2019 ◽  
Vol 24 (7) ◽  
pp. 1271 ◽  
Author(s):  
Nazrul Islam ◽  
Hui Wang ◽  
Faheem Maqbool ◽  
Vito Ferro

Herein, the degradation of low molecular weight chitosan (CS), with 92% degree of deacetylation (DD), and its nanoparticles (NP) has been investigated in 0.2 mg/mL lysozyme solution at 37 °C. The CS nanoparticles were prepared using glutaraldehyde crosslinking of chitosan in a water-in-oil emulsion system. The morphological characterization of CS particles was carried out using scanning electron microscopy (SEM) and Transmission Electron Microscopy (TEM) techniques. Using attenuated total reflectance Fourier transform infrared (ATR-FTIR) and UV-VIS spectroscopy, the structural integrity of CS and its NPs in lysozyme solution were monitored. The CS powder showed characteristic FTIR bands around 1150 cm−1 associated with the glycosidic bridges (C-O-C bonds) before and after lysozyme treatment for 10 weeks, which indicated no CS degradation. The glutaraldehyde crosslinked CS NPs showed very weak bands associated with the glycosidic bonds in lysozyme solution. Interestingly, the UV-VIS spectroscopic data showed some degradation of CS NPs in lysozyme solution. The results of this study indicate that CS with a high DD and its NPs crosslinked with glutaraldehyde were not degradable in lysozyme solution and thus unsuitable for pulmonary drug delivery. Further studies are warranted to understand the complete degradation of CS and its NPs to ensure their application in pulmonary drug delivery.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 911
Author(s):  
Ayca Yıldız-Peköz ◽  
Carsten Ehrhardt

Pulmonary drug delivery represents an attractive, non-invasive administration option. In addition to locally acting drugs, molecules that are intended to produce systemic effects can be delivered via the pulmonary route. Several factors need to be considered in the context of delivering drugs to or via the lungs—in addition to the drug itself, its formulation into an appropriate inhalable dosage form of sufficient stability is critical. It is also essential that this formulation is paired with a suitable inhaler device, which generates an aerosol of a particle/droplet size that ensures deposition in the desired region of the respiratory tract. Lastly, the patient’s (patho-) physiology and inhalation manoeuvre are of importance. This Special Issue brings together recent advances in the areas of inhalation device testing, aerosol formulation development, use of in vitro and in silico models in pulmonary drug deposition and drug disposition studies, and pulmonary delivery of complex drugs, such as vaccines, antibiotics and peptides, to or via the lungs.


Sign in / Sign up

Export Citation Format

Share Document